【題目】已知函數(shù),.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若恒成立,求的取值范圍.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】
(Ⅰ)求導(dǎo)后,分、及三種情況討論,分析導(dǎo)數(shù)在區(qū)間上符號(hào)的變化,即可得出函數(shù)的單調(diào)區(qū)間;
(Ⅱ)原命題等價(jià)于,令函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最小值,即可得出實(shí)數(shù)的取值范圍.
(Ⅰ),定義域?yàn)?/span>,且.
①當(dāng)時(shí),令,得.
若,;若,.
此時(shí),函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;
②當(dāng)時(shí),對(duì)任意的,,
此時(shí),函數(shù)的單調(diào)遞減區(qū)間為;
③當(dāng)時(shí),令,得.
若,;若,.
此時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
綜上所述,當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;
當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為;
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
(Ⅱ)由即為,令,
則,
令,則,令,得.
當(dāng)時(shí),,當(dāng)時(shí),.
所以,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
,
當(dāng)時(shí),,當(dāng)時(shí),.
所以,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,
所以,函數(shù)的最小值為,.
因此,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),g(x)=|xlnx﹣ax2|,a.
(1)討論f(x)的單調(diào)性;
(2)若g(x)在區(qū)間(1,e)有極小值,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,、分別是棱、的中點(diǎn),、分別是線段與上的點(diǎn),則與平面平行的直線有( )
A.0條B.1條C.2條D.無數(shù)條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+blnx(a,b∈R)在點(diǎn)(1,f(1))處的切線方程為yx﹣1.
(1)求ab的值;
(2)當(dāng)x>1時(shí),f(x)0恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)g(x)=exx,求證:對(duì)于x∈(0,+∞),g(x)﹣f(x)>2恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于定義在上的函數(shù),若存在正常數(shù)、,使得對(duì)一切均成立,則稱是“控制增長函數(shù)”,在以下四個(gè)函數(shù)中:①;②;③;④.是“控制增長函數(shù)”的有( )
A.②③B.③④C.②③④D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若不等式對(duì)恒成立,求的值;
(2)若在內(nèi)有兩個(gè)極值點(diǎn),求負(fù)數(shù)的取值范圍;
(3)已知,,若對(duì)任意實(shí)數(shù),總存在正實(shí)數(shù),使得成立,求正實(shí)數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且在上的最大值為,
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,π)內(nèi)的零點(diǎn)個(gè)數(shù),并加以證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號(hào)是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)旅游紀(jì)念品的工廠,擬在2017年度進(jìn)行系列促銷活動(dòng).經(jīng)市場調(diào)查和測算,該紀(jì)念品的年銷售量x(單位:萬件)與年促銷費(fèi)用t(單位:萬元)之間滿足3-x與t+1成反比例.若不搞促銷活動(dòng),紀(jì)念品的年銷售量只有1萬件.已知工廠2017年生產(chǎn)紀(jì)念品的固定投資為3萬元,每生產(chǎn)1萬件紀(jì)念品另外需要投資32萬元.當(dāng)工廠把每件紀(jì)念品的售價(jià)定為“年平均每件生產(chǎn)成本的1.5倍”與“年平均每件所占促銷費(fèi)的一半”之和時(shí),則當(dāng)年的產(chǎn)量和銷量相等.(利潤=收入-生產(chǎn)成本-促銷費(fèi)用)
(1)請把該工廠2017年的年利潤y(單位:萬元)表示成促銷費(fèi)t(單位:萬元)的函數(shù);
(2)試問:當(dāng)2017年的促銷費(fèi)投入多少萬元時(shí),該工廠的年利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com