已知三棱錐S-ABC,G1,G2分別為△SAB,△SAC的重心,則G1G2與△SBC,△ABC所在平面的位置關(guān)系是  


  1. A.
    垂直和平行
  2. B.
    均為平行
  3. C.
    均為垂直
  4. D.
    不確定
B
試題分析:根據(jù)題意,由于三棱錐S-ABC,G1,G2分別為△SAB,△SAC的重心,則G1G2與△SBC,△ABC所在平面的位置關(guān)系是,利用中位線性質(zhì)定理,可知線線平行,得到線面平行,選B.
考點:線面平行
點評:主要是考查了線面平行的判定,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的各頂點都在一個半徑為r的球面上,球心O在AB上,SO⊥底面ABC,AC=
2
r
,則球的體積與三棱錐體積之比是( 。
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2;則此棱錐的體積為
2
6
2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的三條側(cè)棱兩兩垂直,且SA=2,SB=SC=4,若點P到S、A、B、C這四點的距離都是同一個值,則這個值是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•蘭州一模)已知三棱錐S-ABC的所有頂點都在以O(shè)為球心的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,若三棱錐S-ABC的體積為
2
6
,則球O的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的四個頂點在以O(shè)為球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,則當(dāng)球的表面積為400π時,點O到平面ABC的距離為( 。

查看答案和解析>>

同步練習(xí)冊答案