對數(shù)式lg14-2lg
7
3
+lg7-lg18的化簡結(jié)果為(  )
A、1B、2C、0D、3
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用對數(shù)的運算性質(zhì)化簡求值.
解答: 解:lg14-2lg
7
3
+lg7-lg18
=lg2+lg7-2(lg7-lg3)+lg7-(lg9+lg2)
=lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2
=0.
故選:C.
點評:本題考查了對數(shù)的運算性質(zhì),關(guān)鍵是熟記有關(guān)性質(zhì),是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
2x
x+2
,x1=1,xn=f(xn-1)n∈N*且n≥2,計算出x2,x3,x4分別為
2
3
,
1
2
,
2
5
,猜想xn等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)過點(1,2)且與直線x+2y-1=0平行的直線的方程是
 

(2)過點P(4,-1)且與直線3x-4y+6=0垂直的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα+cosα=
6
2
,α∈(0,
π
4
),則sin(α-
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求半徑為4,與圓x2+y2-4x-2y-4=0相切,且和直線y=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2-(m+1)x+t<0的解集為{x|1<x<2,x∈R},
(1)求m,t的值;
(2)若函數(shù)f(x)=-x2+ax+4在區(qū)間(-∞,1]上遞增,在區(qū)間(1,+∞)上遞減,求關(guān)于x的不等式loga(-mx2+3x+2-t)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
2
lnx-
1
2
x,g(x)=2cos2x+sinx+a.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對于任意x1∈[
1
e
,e],總存在x2∈[0,
π
2
],使得f(x1)≤g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個棱長為2的正方體的頂點都在球面上,則這個球的表面積是
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在半徑為3的圓O中,直徑AB與弦CD垂直,垂足為E(E在A、O之間).若CE=
5
,則AE=
 

查看答案和解析>>

同步練習(xí)冊答案