已知函數(shù).
(1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),討論的單調(diào)性;
(3)若對(duì)任意的恒有成立,求實(shí)數(shù)的取值范圍.
(1)極小值,無極大值;(2)參考解析;(3)

試題分析:(1)當(dāng)時(shí).函數(shù)f(x)是一個(gè)對(duì)數(shù)函數(shù)和分式的和的形式.通過求導(dǎo)可以求出函數(shù)的有極小值,但沒極大值.
(2)當(dāng)時(shí).通過求導(dǎo)可得導(dǎo)函數(shù)的兩個(gè)零點(diǎn),在定義域上分別對(duì)兩個(gè)零點(diǎn)的大小討論分類.從而得到函數(shù)的單調(diào)區(qū)間.
(3)由對(duì)任意的恒有成立.首先要求出函數(shù)f(x)在[1,3]上且的最大值.從而對(duì)于任意使得恒成立即可.再通過分離變量即可得到結(jié)論.本題前兩小題較為基礎(chǔ)但第二小題的分類做到清晰不容易,第三小題難度較大.
試題解析:(1)當(dāng)時(shí),     1分
,解得.                                2分
上是減函數(shù),在上是增函數(shù).               3分
的極小值為,無極大值.                   4分
(2).  6分
①當(dāng)時(shí),上是減函數(shù),在上是增函數(shù);   7分
②當(dāng)時(shí),上是減函數(shù);                      8分
③當(dāng)時(shí),上是減函數(shù),在上是增函數(shù).    9分
(3)當(dāng)時(shí),由(2)可知上是減函數(shù),
.              10分
對(duì)任意的恒成立,
                        11分
對(duì)任意恒成立,
對(duì)任意恒成立,                         12分
由于當(dāng)時(shí),,∴.           14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)求的極值點(diǎn);
(2)對(duì)任意的,記上的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(1)當(dāng)時(shí),求上的值域;
(2)求函數(shù)上的最小值;
(3)證明: 對(duì)一切,都有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,(其中),設(shè).
(Ⅰ)當(dāng)時(shí),試將表示成的函數(shù),并探究函數(shù)是否有極值;
(Ⅱ)當(dāng)時(shí),若存在,使成立,試求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,,.
(Ⅰ)請(qǐng)寫出的表達(dá)式(不需證明);
(Ⅱ)求的極小值;
(Ⅲ)設(shè),的最大值為,的最小值為,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) (為實(shí)常數(shù)) .
(1)當(dāng)時(shí),求函數(shù)上的最大值及相應(yīng)的值;
(2)當(dāng)時(shí),討論方程根的個(gè)數(shù).
(3)若,且對(duì)任意的,都有,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,函數(shù)的圖像在點(diǎn)處的切線平行于軸.
(1)求的值;
(2)求函數(shù)的極小值;
(3)設(shè)斜率為的直線與函數(shù)的圖象交于兩點(diǎn),(),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,現(xiàn)給出如下結(jié)論:
;②;③;④.
其中正確結(jié)論的序號(hào)為(   )
A.①③B.①④C.②④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)為常實(shí)數(shù))的定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824031130710293.png" style="vertical-align:middle;" />,關(guān)于函數(shù)給出下列命題:
①對(duì)于任意的正數(shù),存在正數(shù),使得對(duì)于任意的,都有
②當(dāng)時(shí),函數(shù)存在最小值;
③若時(shí),則一定存在極值點(diǎn);
④若時(shí),方程在區(qū)間(1,2)內(nèi)有唯一解.
其中正確命題的序號(hào)是          .

查看答案和解析>>

同步練習(xí)冊(cè)答案