已知θ∈(0,2π) 且sinθ<tanθ<cotθ,則θ的取值范圍是
 
考點(diǎn):三角函數(shù)線
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:先利用θ∈(0,2π),sinθ<tanθ,確定θ的范圍;再根據(jù)tanθ<cotθ,確定θ的范圍,綜合可得θ的范圍.
解答: 解:∵θ∈(0,2π),sinθ<tanθ,
∴θ∈(0,
π
2
)∪(π,
2
).
∵tanθ<cotθ,∴θ∈(0,
π
4
)∪(π,
4
),
綜上可得,θ∈(
4
2
),
故答案為:(0,
π
4
)∪(π,
4
).
點(diǎn)評(píng):本題考查三角函數(shù)的性質(zhì),考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x+3|-m,m∈R,且f(x-2)≤0的解集為[-3,1].
(Ⅰ)求m的值;
(Ⅱ)已知a,b,c都是正數(shù),且a+b+c=m,求證:
1
a+b
+
1
b+c
+
1
c+a
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

①一個(gè)命題的逆命題為真,它的否命題也一定為真;
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個(gè)角成等差數(shù)列”的充要條件.
x>1
y>2
x+y>3
xy>2
的充要條件;
④“am2<bm2”是“a<b”的充分必要條件.
以上說(shuō)法中,判斷正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)空間幾何體的主視圖和左視圖都是矩形,俯視圖是一個(gè)的圓,尺寸如圖,那么這個(gè)幾何體的側(cè)面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m<x1<x2<4m,則
x1+x2
2
的取值范圍是
 
,
x1-x2
2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于任意實(shí)數(shù)x,不等式|2x+m|+|x-1|≥a恒成立時(shí),若實(shí)數(shù)a的最大值為3,則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:(m+1)x+y=2和l2:y=-x+1,若l1∥l2,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在ABC中,a,b,c分別為角A,B,C的對(duì)邊,且角A=60°,若S△ABC=
15
3
4
,且5sinB=3sinC,則ABC的周長(zhǎng)等于(  )
A、8+
19
B、14
C、10+3
5
D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足f(x)=loga
3-x
3+x
(a>0且a≠1),證明當(dāng)a>1時(shí)函數(shù)f(x)在其定義域內(nèi)是單調(diào)遞增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案