一個(gè)空間幾何體的主視圖和左視圖都是矩形,俯視圖是一個(gè)的圓,尺寸如圖,那么這個(gè)幾何體的側(cè)面積為
 
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:根據(jù)三視圖判定幾何體是圓柱,且圓柱的底面直徑為1,高為2.代入圓柱的側(cè)面積公式計(jì)算.
解答: 解:由三視圖知幾何體是圓柱,且圓柱的底面直徑為1,高為2,
∴圓柱的底面半徑為
1
2

∴圓柱的側(cè)面積S=2π×
1
2
×2=2π.
故答案為:2π.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的表面積,判斷三視圖的數(shù)據(jù)所對(duì)應(yīng)的幾何量是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:滿足方程f(x)=x的實(shí)數(shù)x稱為函數(shù)f(x)的“不動(dòng)點(diǎn)”.已知二次函數(shù)f(x)=ax2+bx(a≠0),滿足f(x+1)為偶函數(shù),且函數(shù)f(x)有且僅有一個(gè)不動(dòng)點(diǎn).
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=f(x)+kx2在(0,4)上是增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若1<a<b,求證0<
(b+1)(a-1)
(b-1)(a+1)
<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-y2=1(a>1)的一個(gè)焦點(diǎn)為F,點(diǎn)P在雙曲線上,且|
OP
|=|
OF
|(O為坐標(biāo)原點(diǎn)),則△OPF的面積S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的是
 

①動(dòng)點(diǎn)M至兩定點(diǎn)A、B的距離之比為常數(shù)λ(λ>0且λ≠1).則動(dòng)點(diǎn)M的軌跡是圓.
②橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,則b=c(c
為半焦距).
③雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦點(diǎn)到漸近線的距離為b.
④知拋物線y2=2px上兩點(diǎn)A(x1,y1),B(x2,y2)且OA⊥OB(O為原點(diǎn)),則y1y2=-p2
A.②③④B.①④C.①②③D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)(2x-3)5=a0+a1x+a2x2+…+a5x5,則|a0|+|a1|+|a2|+…+|a5|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ∈(0,2π) 且sinθ<tanθ<cotθ,則θ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3+2i
2-3i
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2+ax+3
(1)當(dāng)x∈R時(shí),f(x)≥a恒成立,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈(-∞,1)時(shí),f(x)≥a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案