(文)設(shè)直線l的方程為(a+1)x+y-2-a=0(a∈R).

(1)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程;

(2)若a>-1,直線l與x、y軸分別交于M、N兩點(diǎn),求△OMN面積取最大值時,直線l的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)二模)(文)斜率為1的直線過拋物線y2=4x的焦點(diǎn),且與拋物線交于兩點(diǎn)A、B.
(1)求|AB|的值;
(2)將直線AB按向量
a
=(-2,0)
平移得直線m,N是m上的動點(diǎn),求
NA
NB
的最小值.
(3)設(shè)C(2,0),D為拋物線y2=4x上一動點(diǎn),證明:存在一條定直線l:x=a,使得l被以CD為直徑的圓截得的弦長為定值,并求出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年西城區(qū)抽樣文)(14分)

給定拋物線,FC的焦點(diǎn),過點(diǎn)F的直線lC相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).

(Ⅰ)設(shè)l的斜率為1,求以AB為直徑的圓的方程;

(Ⅱ)設(shè),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年淄博一模文)(14分)

如圖,在中,,一曲線E過點(diǎn)C,動點(diǎn)P在曲線E上運(yùn)動,并保持的值不變,直線l經(jīng)過點(diǎn)A與曲線E交于兩點(diǎn)。

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求取現(xiàn)E的方程;

(2)設(shè)直線l的斜率為k,若為鈍角,求k的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+)2+y2=36,定點(diǎn)N(,0),點(diǎn)P為圓M上的動點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足=0.

(1)(理22(1)文21(1))求點(diǎn)G的軌跡C的方程;

(2)(理22(2))過點(diǎn)(2,0)作直線l,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè),是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程,若不存在,試說明理由.

(文21(2))直線l的方程為l:3x-2y-6=0,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),且,求證:四邊形OASB為矩形.

查看答案和解析>>

同步練習(xí)冊答案