(文)設(shè)直線l的方程為(a+1)x+y-2-a=0(a∈R).
(1)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)若a>-1,直線l與x、y軸分別交于M、N兩點(diǎn),求△OMN面積取最大值時,直線l的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
a |
NA |
NB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年西城區(qū)抽樣文)(14分)
給定拋物線,F是C的焦點(diǎn),過點(diǎn)F的直線l與C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)設(shè)l的斜率為1,求以AB為直徑的圓的方程;
(Ⅱ)設(shè),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年淄博一模文)(14分)
如圖,在中,,一曲線E過點(diǎn)C,動點(diǎn)P在曲線E上運(yùn)動,并保持的值不變,直線l經(jīng)過點(diǎn)A與曲線E交于兩點(diǎn)。
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求取現(xiàn)E的方程;
(2)設(shè)直線l的斜率為k,若為鈍角,求k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)(理22(1)文21(1))求點(diǎn)G的軌跡C的方程;
(2)(理22(2))過點(diǎn)(2,0)作直線l,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè),是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程,若不存在,試說明理由.
(文21(2))直線l的方程為l:3x-2y-6=0,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),且,求證:四邊形OASB為矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com