10.為得到函數(shù)$y=2sin(2x+\frac{π}{4})$的圖象,只需將函數(shù)y=2cos2x的圖象向右平移$a(0<a<\frac{π}{2})$個(gè)單位,則a=$\frac{π}{8}$.

分析 由條件利用y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將函數(shù)y=2cos2x的圖象向右平移$\frac{π}{8}$單位,
可得函數(shù)y=2cos2(x-$\frac{π}{8}$)=2cos(2x-$\frac{π}{4}$)=2sin(2x+$\frac{π}{4}$)的圖象,
故答案為:$\frac{π}{8}$.

點(diǎn)評(píng) 本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=xa的圖象過點(diǎn)(4,2),令an=$\frac{1}{f(n+1)+f(n)}$,n∈N*,記(an}的前n項(xiàng)為Sn,則S2016=( 。
A.$\sqrt{2014}$-1B.$\sqrt{2015}$-1C.$\sqrt{2016}$-1D.$\sqrt{2017}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知兩條直線l1:y=$\sqrt{3}$x,l2:ax+y=0,a為實(shí)數(shù),當(dāng)這條直線的夾角在[0,$\frac{π}{3}$)內(nèi)變動(dòng)時(shí)a的取值范圍是( 。
A.(-∞,$\sqrt{3}$)B.(-$\sqrt{3}$,-$\frac{\sqrt{3}}{3}$)C.(-∞,0)∪($\sqrt{3}$,+∞)D.(-$\sqrt{3}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知△ABC外接圓的半徑為2,圓心為O,且$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO},|{\overrightarrow{AB}}|=|{\overrightarrow{AO}}|$,則$\overrightarrow{CA}•\overrightarrow{CB}$=( 。
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知偶函數(shù)f(x)的定義域?yàn)镽,且f(1+x)=f(1-x),又當(dāng)x∈[0,1]時(shí),f(x)=x,函數(shù)g(x)=$\left\{\begin{array}{l}{lo{g}_{4}x(x>0)}\\{{4}^{x}(x≤0)}\end{array}\right.$,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-4,4]上的零點(diǎn)個(gè)數(shù)為( 。
A.8B.6C.9D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖所示,在平行四邊形ABCD中,M,N分別為DC,BC的中點(diǎn),已知$\overrightarrow{AN}=\overrightarrow b,\overrightarrow{AM}=\overrightarrow c,\overrightarrow{AD}用\overrightarrow c,\overrightarrow b$表示為$\overrightarrow{AD}$=$\frac{4}{3}\overrightarrow{c}-\frac{2}{3}\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)=$\left\{\begin{array}{l}{-2|2x-1|+1,x≥0}\\{-2|2x+1|+1,x<0}\end{array}\right.$和g(x)=x2-2|x|+m(m∈R),則下列命題錯(cuò)誤的是( 。
A.函數(shù)f(x)的圖象關(guān)于直線x=0對(duì)稱
B.關(guān)于x的方程f(x)-k=0恰有四個(gè)不相等實(shí)數(shù)根的充要條件是k∈(-1,1)
C.當(dāng)m=1時(shí),對(duì)?x1∈[-1,0],?x2∈[-1,0],f(x1)<g(x2)成立
D.若?x1∈[-1,1],?x2∈[-1,1],f(x1)<g(x2)成立,則m∈(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“M>N”是“l(fā)og2M>log2N”成立的( 。l件.
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)在R上為奇函數(shù),且x>0時(shí),f(x)=x2-x,則當(dāng)x<0時(shí),f(x)=-x2-x.

查看答案和解析>>

同步練習(xí)冊(cè)答案