如果復(fù)數(shù)z滿足(2+i)z=5i(i是虛數(shù)單位),則z(  )
A、1+2iB、-1+2i
C、2+iD、1-2i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用兩個復(fù)數(shù)相除,分子和分母同時乘以分母的共軛復(fù)數(shù),計算求得結(jié)果.
解答: 解:∵(2+i)z=5i,∴z=
5i
2+i
=
5i(2-i)
(2+i)(2-i)
=-1+2i,
故選:A.
點(diǎn)評:本題主要考查兩個復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,⊙O和⊙O′相交于A、B兩點(diǎn),過A作兩圓的切線分別交兩圓于C、D兩點(diǎn),連接DB、CB,已知BC=3,BD=4,則AB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)A的極坐標(biāo)為(
2
,
π
4
),直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=a,且點(diǎn)A在直線l上,
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為
x=1+cosα
y=sinα
(α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R,i為虛數(shù)單位,且x+yi=
3+4i
1+2i
,則x+y=(  )
A、
7
5
B、
9
5
C、
11
5
D、
13
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù),乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中用x表示.若甲、乙兩組共有8名同學(xué)植樹棵數(shù)的平均數(shù)為9,則x為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是內(nèi)角A,B,C所對的邊長,
BD
=2
DC
,
AB
AD
=0,
AB
BC
=-6,|
AD
|=
2
3
3
.則內(nèi)角B的大小為( 。
A、
12
B、
π
3
C、
π
6
D、
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)0≤x≤
1
2
時,|ax-2x3|≤
1
2
恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、
3
2
≥a≥-
1
2
B、-
1
2
≥a≥
1
2
C、a≥-
1
2
D、a≤
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC與△BDC同時內(nèi)接于圓,則圓心O是這兩個三角形的( 。
A、重心B、垂心
C、外心D、重心和垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意x、y(x、y∈R)滿足:f(x+y)=f(x)+f(y)在[0,3]上為減函數(shù).且f(1)=-3,求x∈[-3,3)上的值域.

查看答案和解析>>

同步練習(xí)冊答案