設(shè)有一組圓Ck:(x-k+1)2+(y-3k)2=2k4,下列五個命題:
①圓心在定直線上運動;
②存在一條定直線與所有的圓均相切;
③存在一條定直線與所有的圓均相交;
④存在一條定直線與所有的圓均不相交;
⑤所有的圓均不過原點;
其中正確的有
 
(填上所有正確的序號)
考點:圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:根據(jù)圓的方程找出圓心坐標(biāo),發(fā)現(xiàn)滿足條件的所有圓的圓心在一條直線上,所以這條直線與所有的圓都相交;根據(jù)圖象可知這些圓互相內(nèi)含,不存在一條定直線與所有的圓均相切,不存在一條定直線與所有的圓均不相交;利用反證法,假設(shè)經(jīng)過原點,將(0,0)代入圓的方程,因為左邊為奇數(shù),右邊為偶數(shù),故不存在k使上式成立,假設(shè)錯誤,則圓不經(jīng)過原點.
解答: 解:根據(jù)題意得:圓心(k-1,3k),
圓心在直線y=3(x+1)上,故存在直線y=3(x+1)與所有圓都相交,選項①,③正確;
考慮兩圓的位置關(guān)系,
圓k:圓心(k-1,3k),半徑為
2 
k2
,
圓k+1:圓心(k-1+1,3(k+1)),即(k,3k+3),
半徑為
2
(k+1)2,
兩圓的圓心距d=
(k-k+1)2+(3k-3k-3)2
=
10
,
兩圓的半徑之差R-r=(k+1)2-
2
k2=2
2
k+
2
,
任取k=1或2時,(R-r>d),Ck含于Ck+1之中,選項②錯誤;
若k取無窮大,則可以認(rèn)為所有直線都與圓相交,選項④錯誤;
將(0,0)帶入圓的方程,則有(-k+1)2+9k2=2k4,即10k2-2k+1=2k4(k∈N*),
因為左邊為奇數(shù),右邊為偶數(shù),故不存在k使上式成立,即所有圓不過原點,選項⑤正確.
則真命題的代號是③⑤.
故答案為:①③⑤.
點評:本題考查命題真假的判斷,是一道綜合題,要求學(xué)生會將直線的參數(shù)方程化為普通方程,會利用反證法進(jìn)行證明,會利用數(shù)形結(jié)合解決實際問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=5-
3
2
t
y=-
3
+
1
2
t
(t參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ4cos(θ-
π
3
).
(1)判斷直線與圓的位置關(guān)系;
(2)若點P(x,y)在圓C上,求
3
x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(0,2)的直線和拋物線y2=8x交于A,B兩點,若線段AB的中點在直線x=2上,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C與雙曲線x2-y2=a2關(guān)于點(3,4)對稱,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x)+1=
1
f(x+1)
,當(dāng)x∈[0,1]時,f(x)=x,若在區(qū)間(-1,1]內(nèi),函數(shù)g(x)=f(x)-logm(x+2)有兩個零點,則實數(shù)m的取值范圍是( 。
A、(0,
1
3
B、(0,
1
3
]
C、[3,+∞)
D、(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某幾何體的三視圖是如圖所示的三個直角三角形,則該幾何體的體積為(  )
A、60B、20C、30D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

ABC是單位圓上不重合的三點,對任意正數(shù)x,
OA
=2
OB
+x
OC
,則x的取值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓C的焦點為F1(-4,0)、F2(4,0),且經(jīng)過點P(3,1).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點M在橢圓C上,且
OM
=
1
2
PF1
PF2
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+b
1+x2
為奇函數(shù),且定義域為(-1,1),f(
1
2
)=
2
5

(1)求實數(shù)a,b的值;
(2)求證:函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案