【題目】已知數(shù)列{an}的首項(xiàng)為1,前n項(xiàng)和Sn與an之間滿足an= (n≥2,n∈N*)
(1)求證:數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)存在正整數(shù)k,使(1+S1)(1+S1)…(1+Sn)≥k 對于一切n∈N*都成立,求k的最大值.
【答案】
(1)證明:∵數(shù)列{an}的前n項(xiàng)和Sn與an之間滿足an= (n≥2,n∈N*),
∴Sn﹣Sn﹣1= ,化為: ﹣ =2.
∴數(shù)列{ }是等差數(shù)列,公差為2,首項(xiàng)為1.
(2)解:由(1)可得: =1+2(n﹣1)=2n﹣1,可得Sn= .
∴n≥2時,an=Sn﹣Sn﹣1= ﹣ .
∴an= .
(3)解:∵1+Sn=1+ = .
∴Tn=(1+S1)(1+S1)…(1+Sn)= × ×…× > × ×…× = ×…× ×(2n+1)
= ,
可得:Tn> .
∴存在正整數(shù)k,使(1+S1)(1+S1)…(1+Sn)≥k 對于一切n∈N*都成立,則k的最大值為1.
【解析】(1)數(shù)列{an}的前n項(xiàng)和Sn與an之間滿足an= (n≥2,n∈N*),可得Sn﹣Sn﹣1= ,化為: ﹣ =2.即可證明.(2)由(1)可得: =1+2(n﹣1)=2n﹣1,可得Sn= .n≥2時,an=Sn﹣Sn﹣1;n=1時,a1=1.(3)1+Sn=1+ = .可得Tn=(1+S1)(1+S1)…(1+Sn)= × ×…× > × ×…× = ×…× ×(2n+1)= ,可得:Tn> .即可得出.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)有零點(diǎn),其實(shí)數(shù)的取值范圍.
(Ⅱ)證明:當(dāng)時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某貨運(yùn)員擬運(yùn)送甲、乙兩種貨物,每件貨物的體積、重量、可獲利潤如表所示:
體積(升/件) | 重量(公斤/件) | 利潤(元/件) | |
甲 | 20 | 10 | 8 |
乙 | 10 | 20 | 10 |
在一次運(yùn)輸中,貨物總體積不超過110升,總重量不超過100公斤,那么在合理的安排下,一次運(yùn)輸獲得的最大利潤為( )
A.65元
B.62元
C.60元
D.56元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了解本市2萬名學(xué)生的漢字書寫水平,在全市范圍內(nèi)進(jìn)行了漢字聽寫考試,現(xiàn)從某校隨機(jī)抽取了50名學(xué)生,將所得成績整理后,發(fā)現(xiàn)其成績?nèi)拷橛?/span>之間,將其成績按如下分成六組,得到頻數(shù)分布表
成績 | ||||||
人數(shù) | 4 | 10 | 16 | 10 | 6 | 4 |
(1)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估算該校50名學(xué)生成績的平均值和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)以該校50名學(xué)生成績的頻率作為概率,試估計(jì)該市分?jǐn)?shù)在的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直三棱柱ABC﹣A1B1C1 , 點(diǎn)P、Q分別在棱AA1和CC1上,AP=C1Q,則平面BPQ把三棱柱分成兩部分的體積比為( )
A.2:1
B.3:1
C.3:2
D.4:3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知 = .
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義f″(x)是y=f(x)的導(dǎo)函數(shù)y=f′(x)的導(dǎo)函數(shù),若方程f″(x)=0有實(shí)數(shù)解x0 , 則稱點(diǎn)(x0 , f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.可以證明,任意三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點(diǎn)”和對稱中心,且“拐點(diǎn)”就是其對稱中心,請你根據(jù)這一結(jié)論判斷下列命題:
①存在有兩個及兩個以上對稱中心的三次函數(shù);
②函數(shù)f(x)=x3﹣3x2﹣3x+5的對稱中心也是函數(shù) 的一個對稱中心;
③存在三次函數(shù)h(x),方程h′(x)=0有實(shí)數(shù)解x0 , 且點(diǎn)(x0 , h(x0))為函數(shù)y=h(x)的對稱中心;
④若函數(shù) ,則 =﹣1007.5.
其中正確命題的序號為(把所有正確命題的序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角△ABC中,∠ACB=30°,∠B=90°,D為AC中點(diǎn)(左圖),將∠ABD沿BD折起,使得AB⊥CD(右圖),則二面角A﹣BD﹣C的余弦值為( )
A.﹣
B.
C.﹣
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com