如圖,在△ABC中,D是邊AC上的點(diǎn),且AB=AD,2AB=BD,BC=2BD,則sinC的值為( )
A.
B.
C.
D.
【答案】分析:根據(jù)題中條件,在△ABD中先由余弦定理求出cosA,利用同角關(guān)系可求sinA,利用正弦定理可求sin∠BDC,然后在△BDC中利用正弦定理求解sinC即可
解答:解:設(shè)AB=x,由題意可得AD=x,BD=
△ABD中,由余弦定理可得
∴sinA=
△ABD中,由正弦定理可得⇒sin∠ADB=

△BDC中,由正弦定理可得
故選:D.
點(diǎn)評(píng):本題主要考查了在三角形中,綜合運(yùn)用正弦定理、余弦定理、同角基本關(guān)系式等知識(shí)解三角形的問(wèn)題,反復(fù)運(yùn)用正弦定理、余弦定理,要求考生熟練掌握基本知識(shí),并能靈活選擇基本工具解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點(diǎn)E,以BE為直徑的⊙O恰與AC相切于點(diǎn)D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長(zhǎng);
(2)計(jì)算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點(diǎn),且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為( 。
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,設(shè)
AB
=a
AC
=b
,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點(diǎn),AD=5,AC=7,DC=3.
(1)求∠ADC的大;
(2)求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案