13.(x-1)9按x的降冪排列系數(shù)最大的項(xiàng)是(  )
A.第4項(xiàng)和第5項(xiàng)B.第5項(xiàng)C.第5項(xiàng)和第3項(xiàng)D.第3項(xiàng)

分析 由題意根據(jù)二項(xiàng)式(1-x)9的展開式的通項(xiàng)公式可得當(dāng)r=4時(shí),第5項(xiàng)的系數(shù)最大,由此可得結(jié)論

解答 解:二項(xiàng)式(1-x)9的展開式的通項(xiàng)公式為Tr+1=C9r•(-1)r•xr,
故第r+1項(xiàng)的系數(shù)為(-1)r•C9r,故當(dāng)r=4時(shí),第5項(xiàng)的系數(shù)最大,
故選:B.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.?dāng)?shù)列{an}定義為a1>0,a11=a,an+1=an+$\frac{1}{2}$an2,n∈N*
(1)若a1=$\frac{a}{1+2a}$(a>0),求$\frac{1}{{2+{a_1}}}$+$\frac{1}{{2+{a_2}}}$+…+$\frac{1}{{2+{a_{10}}}}$的值;
(2)當(dāng)a>0時(shí),定義數(shù)列{bn},b1=ak(k≥12),bn+1=-1+$\sqrt{1+2{b_n}}$,是否存在正整數(shù)i,j(i≤j),使得bi+bj=a+$\frac{1}{2}$a2+$\sqrt{1+2a}$-1.如果存在,求出一組(i,j),如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在長方體ABCD-A1B1C1D1中,AA1=$\sqrt{2}$,AB=1,AD=m(m>0),E為BC的中點(diǎn),且∠A1ED=90°
(1)求異面直線A1E與CD所成角的大小;
(2)若點(diǎn)M滿足$\overrightarrow{BM}$=$\frac{1}{2}$$\overrightarrow{M{B}_{1}}$,問:是否存在實(shí)數(shù)λ,使$\overrightarrow{AN}$=λ$\overrightarrow{AD}$,MN∥平面A1ED同時(shí)成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.(1)A∩(B∪C)(2)(∁UC)∩(A∩B)(3)(∁BC)∩A(4)(∁UB)∩A∪[(∁UA)∩C].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知(x3+$\frac{1}{{x}^{3}}$)n展開式中只有第6項(xiàng)系數(shù)最大,求第3項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合A={(x,y)||x|<2,x+y<3,x∈Z,y∈N+},B={0,1,2},從A到B的對應(yīng)法則f:(x,y)→x+y,試作出對應(yīng)圖,并判斷對應(yīng)法則f是否從A到B的映射.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.?dāng)?shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}≤1)}\\{{a}_{n}-1({a}_{n}>1)}\end{array}\right.$且a1=$\frac{6}{7}$,則a20=$\frac{3}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知-$\frac{π}{2}$<α<0,tanα=-2,求sinα,cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=ex-ax存在大于零的極值點(diǎn),則實(shí)數(shù)a的取值范圍為(1,+∞).

查看答案和解析>>

同步練習(xí)冊答案