已知數(shù)列的前n項和為,
(1)證明:數(shù)列是等差數(shù)列,并求;
(2)設(shè),求證:

(1)證明略,,(2)詳見解析.

解析試題分析:(1)利用代入得關(guān)于的遞推公式,然后變形為,利用等差數(shù)列的定義即可說明;
(2)由已知可得,利用裂項求和法求,然后放縮一下即可.
試題解析:(1)證明:由知,當(dāng)時:,
,∴,對成立.
是首項為1,公差為1的等差數(shù)列.
,∴.   6分
(2),   8分

=.   12分
考點:(1)等差數(shù)列的定義;(2)裂項求和法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013•浙江)在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(Ⅰ)求d,an;
(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,是等比數(shù)列,其中,,且、的等差中項,、的等差中項.
(1)求數(shù)列的通項公式;
(2)記,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是正數(shù)組成的數(shù)列,其前項和為,且對所有的正整數(shù),與2的等差中項等于與2的等比中項,求:數(shù)列的通項公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列{}的前n項和為S,且S3=2S2+4,a5=36.
(1)求,Sn;
(2)設(shè),求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列{}中,,
(1)求數(shù)列的通項公式
(2)設(shè)),求數(shù)列的前10項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的各項均為正數(shù),其前項和為,且,,數(shù)列是首項和公比均為的等比數(shù)列.
(1)求證數(shù)列是等差數(shù)列;
(2)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為銳角,且,函數(shù),數(shù)列 的首項,.
(1)求函數(shù)的表達(dá)式;(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè){an}是首項為a,公差為d的等差數(shù)列(d≠0),Sn是其前n項和.記bn,n∈N*,其中c為實數(shù).
(1)若c=0,且b1,b2,b4成等比數(shù)列,證明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差數(shù)列,證明:c=0.

查看答案和解析>>

同步練習(xí)冊答案