10.設(shè)x為實(shí)數(shù),[x]表示不大于x的最大整數(shù),如[π]=3,$[{-1.3}]=-2,[{\frac{1}{2}}]=0$,則使[|x-1|]=1成立的x的取值范圍是2≤x<3或-1<x≤0.

分析 由新定義可得1≤|x-1|<2,解不等式可得答案.

解答 解:由題意可得[|x-1|]=1即為1≤|x-1|<2,
∴1≤x-1<2或-2<x-1≤-1,
解得2≤x<3或-1<x≤0
故答案為:2≤x<3或-1<x≤0

點(diǎn)評 本題考查函數(shù)的解析式,涉及新定義和不等式的解法,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在公差不為零的等差數(shù)列{an}中,2a4-a82+2a12=0,若數(shù)列{bn}是等比數(shù)列,且b8=a8,則b5b11=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2ax-$\frac{1}{{x}^{2}}$,x∈(0,1],若f(x)在x∈(0,1)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.當(dāng)x∈[0,$\frac{π}{2}$]時,函數(shù)f(x)=2sin(2x+$\frac{π}{3}$)的值域是[$-\sqrt{3}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一個質(zhì)地均勻的正方體骰子的六個面上分別刻有1到6的點(diǎn)數(shù).將骰子拋擲兩次,擲第一次,將朝上一面的點(diǎn)數(shù)記為x,擲第二次,將朝上一面的點(diǎn)數(shù)記為y,則點(diǎn)(x,y)落在直線y=-x+5上的概率為( 。
A.$\frac{1}{18}$B.$\frac{1}{12}$C.$\frac{1}{9}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知:關(guān)于x的方程x2+(a2-9)x+a2-5a+6=0的一根小于0,另一根大于2,則a的取值范圍是( 。
A.$a>\sqrt{19}或a<-\sqrt{19}或-\sqrt{3}<a<\sqrt{3}$B.$2<a<\frac{8}{3}$
C.$-1<a<\frac{8}{3}$D.a∈∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.曲線y=$\frac{1}{3}{x^3}$-2在點(diǎn)$(-1,-\frac{7}{3})$處的切線的傾斜角為( 。
A.30°B.45°C.135°D.-45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論恒成立的是( 。
A.|f(x)|-g(x)是奇函數(shù)B.f(x)-|g(x)|是奇函數(shù)C.|f(x)|+g(x)是偶函數(shù)D.f(x)+|g(x)|是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若變量x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≤0\\ x+2y-8≤0\\ x≥0\end{array}\right.$,則z=3x+y的最小值為(  )
A.3B.4C.2D.1

查看答案和解析>>

同步練習(xí)冊答案