如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.

(Ⅰ)求點(diǎn)A到平面PBD的距離;

(Ⅱ)求二面角A-PB-D的余弦值.

答案:
解析:

  解:以O(shè)A、OB所在直線分別x軸,y軸,以過(guò)O且垂直平面ABCD的直線為z軸,建立空間直角坐標(biāo)系,則…(2分)

  (Ⅰ)設(shè)平面PDB的法向量為,

  由

  所以 6分

  (Ⅱ)設(shè)平面ABP的法向量,

  ,,

  所以,而所求的二面角與互補(bǔ),

  所以二面角APBD的余弦值為 12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60,
(1)求點(diǎn)A到平面PBD的距離的值;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、如圖四邊形ABCD是菱形,PA⊥平面ABCD,Q為PA的中點(diǎn).
求證:(1)PC∥平面QBD;
(2)平面QBD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)求點(diǎn)A到平面PBD的距離;
(Ⅲ)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求證:平面PBD⊥平面PAC;
(2)求點(diǎn)A到平面PBD的距離;
(3)求二面角B-PC-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)證明:面PBD⊥面PAC;
(2)求銳二面角A-PC-B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案