【題目】某校名學(xué)生參加軍事冬令營(yíng)活動(dòng),活動(dòng)期間各自扮演一名角色進(jìn)行分組游戲,角色按級(jí)別從小到大共種,分別為士兵、排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級(jí)別連續(xù)的個(gè)不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.

【答案】

【解析】

對(duì)新加入的學(xué)生所扮演的角色進(jìn)行分類討論,分析各種情況下個(gè)學(xué)生所扮演的角色的分組,綜合可得出結(jié)論.

依題意,名學(xué)生分成組,則一定是個(gè)人組和個(gè)人組.

①若新加入的學(xué)生是士兵,則可以將這個(gè)人分組如下;名士兵;士兵、排長(zhǎng)、連長(zhǎng)各名;營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)各名;師長(zhǎng)、軍長(zhǎng)、司令各名;名司令.所以新加入的學(xué)生可以是士兵,由對(duì)稱性可知也可以是司令;

②若新加入的學(xué)生是排長(zhǎng),則可以將這個(gè)人分組如下:名士兵;連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令;名排長(zhǎng).所以新加入的學(xué)生可以是排長(zhǎng),由對(duì)稱性可知也可以是軍長(zhǎng);

③若新加入的學(xué)生是連長(zhǎng),則可以將這個(gè)人分組如下:名士兵;士兵、排長(zhǎng)、連長(zhǎng)各名;連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令.所以新加入的學(xué)生可以是連長(zhǎng),由對(duì)稱性可知也可以是師長(zhǎng);

④若新加入的學(xué)生是營(yíng)長(zhǎng),則可以將這個(gè)人分組如下:名士兵;排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)各名;營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)各名;師長(zhǎng)、軍長(zhǎng)、司令各名;名司令.所以新加入的學(xué)生可以是營(yíng)長(zhǎng),由對(duì)稱性可知也可以是旅長(zhǎng);

⑤若新加入的學(xué)生是團(tuán)長(zhǎng),則可以將這個(gè)人分組如下:名士兵;排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令;名團(tuán)長(zhǎng).所以新加入的學(xué)生可以是團(tuán)長(zhǎng).

綜上所述,新加入學(xué)生可以扮演種角色.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn),,動(dòng)點(diǎn)P為平面上一個(gè)動(dòng)點(diǎn),且直線SP,TP的斜率之積為.

1)求動(dòng)點(diǎn)P的軌跡E的方程;

2)設(shè)點(diǎn)B為軌跡Ey軸正半軸的交點(diǎn),是否存在斜率為直線l,使得l交軌跡EM,N兩點(diǎn),且恰是的重心?若存在,求l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCDA1B1C1D1的棱長(zhǎng)為a,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F,且EFa,以下結(jié)論正確的有( 。

A.ACBE

B.點(diǎn)ABEF的距離為定值

C.三棱錐ABEF的體積是正方體ABCDA1B1C1D1體積的

D.異面直線AE,BF所成的角為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是函數(shù)的極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)求證:函數(shù)存在唯一的極小值點(diǎn),且.

(參考數(shù)據(jù):,,其中為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校名學(xué)生參加軍事冬令營(yíng)活動(dòng),活動(dòng)期間各自扮演一名角色進(jìn)行分組游戲,角色按級(jí)別從小到大共種,分別為士兵、排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級(jí)別連續(xù)的個(gè)不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了保障某種藥品的主要藥理成分在國(guó)家藥品監(jiān)督管理局規(guī)定的值范圍內(nèi),某制藥廠在該藥品的生產(chǎn)過(guò)程中,檢驗(yàn)員在一天中按照規(guī)定每間隔2小時(shí)對(duì)該藥品進(jìn)行檢測(cè),每天檢測(cè)4次:每次檢測(cè)由檢驗(yàn)員從該藥品生產(chǎn)線上隨機(jī)抽取20件產(chǎn)品進(jìn)行檢測(cè),測(cè)量其主要藥理成分含量(單位:)根據(jù)生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條藥品生產(chǎn)線正常狀態(tài)下生產(chǎn)的產(chǎn)品的其主要藥理成分含量服從正態(tài)分布.

1)假設(shè)生產(chǎn)狀態(tài)正常,記表示某次抽取的20件產(chǎn)品中其主要藥理成分含量在之外的藥品件數(shù),求的數(shù)學(xué)期望;

2)在一天的四次檢測(cè)中,如果有一次出現(xiàn)了主要藥理成分含量在之外的藥品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過(guò)程可能出現(xiàn)異常情況,需對(duì)本次的生產(chǎn)過(guò)程進(jìn)行檢查;如果有兩次或兩次以上出現(xiàn)了主要藥理成分含量在之外的藥品,則需停止生產(chǎn)并對(duì)原材料進(jìn)行檢測(cè).

①下面是檢驗(yàn)員在某次抽取的20件藥品的主要藥理成分含量:

10.02

9.78

10.04

9.92

10.14

9.22

10.13

9.91

9.95

10.09

9.96

9.88

10.01

9.98

10.05

10.05

9.96

10.12

經(jīng)計(jì)算得,.其中為抽取的第件藥品的主要藥理成分含量,用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對(duì)本次的生產(chǎn)過(guò)程進(jìn)行檢查?

②試確定一天中需停止生產(chǎn)并對(duì)原材料進(jìn)行檢測(cè)的概率(精確到0.001.

附:若隨機(jī)變量服從正態(tài)分布,則,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐PABC中,底面ABC,,D,E分別是AC,PC的中點(diǎn),FPB上一點(diǎn),且,MPA的中點(diǎn),二面角的大小為45°.

1)證明:平面AEF

2)求直線AF與平面BCM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校對(duì)高一年級(jí)學(xué)生寒假參加社區(qū)服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),隨機(jī)抽取了名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計(jì)表和頻率分布直方圖如下:

(1)求表中的值和頻率分布直方圖中的值,并根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);

(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在的人中共抽取6人,再?gòu)倪@6人中選2人,求2人服務(wù)次數(shù)都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合,設(shè)集合是集合的非空子集,中的最大元素和最小元素之差稱為集合的直徑. 那么集合所有直徑為的子集的元素個(gè)數(shù)之和為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案