11.設(shè)曲線y=$\sqrt{{a}^{2}+1}$sinx(a∈R)上任一點(x,y)處切線斜率為g(x),則函數(shù)y=x2g(x)的部分圖象可以為(  )
A.B.C.D.

分析 求導(dǎo)y′=$\sqrt{{a}^{2}+1}$cosx,從而可得y=x2g(x)=$\sqrt{{a}^{2}+1}$x2cosx,從而判斷.

解答 解:∵y=$\sqrt{{a}^{2}+1}$sinx,∴y′=$\sqrt{{a}^{2}+1}$cosx,
由導(dǎo)數(shù)的幾何意義知,
g(x)=$\sqrt{{a}^{2}+1}$cosx,
故y=x2g(x)=$\sqrt{{a}^{2}+1}$x2cosx,
故函數(shù)y=x2g(x)是偶函數(shù),
故排除A,D;
又∵當x=0時,y=0,
故排除C,
故選B.

點評 本題考查了導(dǎo)數(shù)的運算及導(dǎo)數(shù)的幾何意義的應(yīng)用,同時考查了數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.平面凸四邊形ABCD,AB=2,BC=3,CD=4,AD=5,則此四邊形的最大面積為$2\sqrt{30}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.等比數(shù)列{an}滿足a3a5=64,a3+a5=20,且公比為大于1的數(shù).
(1)求{an}通項公式;
(2)設(shè)bn=2n-1,求{an+bn}前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知A為△ABC的最小內(nèi)角,若向量$\overrightarrow{a}$=(cos2A,sin2A),$\overrightarrow$=($\frac{1}{co{s}^{2}A+1}$,$\frac{1}{si{n}^{2}A-2}$),則$\overrightarrow{a}$$•\overrightarrow$的取值范圍是( 。
A.(-∞,$\frac{1}{2}$)B.(-1,$\frac{1}{2}$)C.[-$\frac{2}{5}$,$\frac{1}{2}$)D.[-$\frac{2}{5}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax2-blnx在點(1,f(1))處的切線方程為y=1;
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax+y的最大值為a+1,則a的取值范圍為( 。
A.(-1,1)B.[-1,1]C.[-1,1)D.(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若復(fù)數(shù)z滿足zi=1-i,則z的共軛復(fù)數(shù)是( 。
A.-1-iB.1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某電子商務(wù)公司對10000名網(wǎng)絡(luò)購物者2015年度的消費情況進行統(tǒng)計,發(fā)現(xiàn)消費金額(單位:萬元)都在區(qū)間[0.3,0.9],其頻率分布直方圖如圖所示,在這些購物者中,消費金額在區(qū)間[0.5,0.9]內(nèi)的購物者的人數(shù)為( 。
A.3000B.4000C.5000D.6000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在復(fù)平面內(nèi),復(fù)數(shù)z對應(yīng)的點的坐標為(2,-1),則|z|=( 。
A.$\sqrt{5}$B.5C.3D.1

查看答案和解析>>

同步練習(xí)冊答案