分析 由分段函數(shù)的解析式,討論m>0,m<0,再由對數(shù)函數(shù)的單調(diào)性,解不等式,求并集即可得到.
解答 解:函數(shù) f(x)=$\left\{\begin{array}{l}{ln(-x),x<0}\\{-lnx,x>0}\end{array}\right.$,
當(dāng)m>0,f(m)>f(-m)即為-lnm>lnm,
即lnm<0,解得0<m<1;
當(dāng)m<0,f(m)>f(-m)即為ln(-m)>-ln(-m),
即ln(-m)>0,解得m<-1.
綜上可得,m<-1或0<m<1.
故答案為:(-∞,-1)∪(0,1).
點(diǎn)評 本題考查分段函數(shù)的運(yùn)用,考查對數(shù)函數(shù)的單調(diào)性的運(yùn)用,運(yùn)用分類討論的思想方法是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 1 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com