已知x2+y2=9的內接△ABC中,點A的坐標是(-3,0),重心G的坐標是(,求(1)直線BC的方程;(2)弦BC的長度.

(1) 4x-8y-15=0.

(2)


解析:

(1)設B(x1,y1),C(x2,y2),連AG交BC于M,則M為BC的中點,

由三角形的重心公式得:,

∴點M的坐標為(,連結OM,則OM⊥BC,又kOM=-2, ∴kBC=!郆C的方程為y+,即4x-8y-15=0.

(2)連結OB,在Rt△OB M中,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓x2+y2=9的弦PQ的中點為M(1,2),則弦PQ的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知AC、BD為圓O:x2+y2=9的兩條相互垂直的弦,垂足為N(
2
,2)
,則四邊形ABCD的面積的最大值為
12
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知AC、BD為圓O:x2+y2=9的兩條相互垂直的弦,垂足為M(1,
3
)
,則四邊形ABCD的面積的最大值為
14
14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
9
-
y2
b2
=1(b>0)
,過其右焦點F作圓x2+y2=9的兩條切線,切點記作C,D,雙曲線的右頂點為E,∠CED=150°,則雙曲線的離心率為
 

查看答案和解析>>

同步練習冊答案