【題目】已知數(shù)列的前n項的和Sn,點(n,Sn)在函數(shù)=2x2+4x圖象上:
(1)證明是等差數(shù)列;
(2)若函數(shù),數(shù)列{bn}滿足bn=,記cn=anbn,求數(shù)列前n項和Tn;
(3)是否存在實數(shù)λ,使得當x≤λ時,f(x)=﹣x2+4x﹣≤0對任意n∈N*恒成立?若存在,求出最大的實數(shù)λ,若不存在,說明理由.
【答案】(1) 數(shù)列{an}的通項公式為an=4n+2;(2) Tn=10﹣(2n+5) ;(3) 實數(shù)λ=1,見解析.
【解析】試題分析:(1)要求數(shù)列的通項公式,利用,然后把 代入驗證;
(2)由函數(shù) ,數(shù)列滿足 ,利用錯位相減法可得數(shù)列{ 前 項和
(3)假設存在實數(shù) ,使得當 時,
對任意 恒成立,即對任意恒成立,由
是遞增數(shù)列,能推導出存在最大的實數(shù) ,使得當 時, 對任意恒成立
試題解析;(1)由題意,Sn=2n2+4n,
當n=1時,a1=S1=6,
n≥2時,an=Sn﹣Sn﹣1=(2n2+4n)﹣[2(n﹣1)2+4(n﹣1)]=4n+2,
當n=1時,a1=S1=4+2=6,也適合上式
∴數(shù)列{an}的通項公式為an=4n+2,n∈N*;是等差數(shù)列
(2)∵函數(shù)g(x)=2﹣x,
∴數(shù)列{bn}滿足bn=g(n)=2﹣n,
又∵cn=anbn,
∴Tn=6×2﹣1+10×2﹣2+14×2﹣3+…+(4n+2)×2﹣n,…①,
∴Tn=6×2﹣2+10×2﹣3+…+(4n﹣2)×2﹣n+(4n+2)×2﹣(n+1),…②,
①﹣②得:
(3)假設存在實數(shù)λ,使得當x≤λ時,對任意
n∈N*恒成立,即任意n∈N*恒成立,
∵an=4n+2,是遞增數(shù)列,
所以只要﹣x2+4x≤c1,即x2﹣4x+3≥0,解得x≤1或x≥3.
所以存在最大的實數(shù)λ=1,使得當x≤λ時,f(x)≤cn對任意n∈N*恒成立.
科目:高中數(shù)學 來源: 題型:
【題目】已知各項均為正數(shù)的等比數(shù)列{an}中,a2=4,a4=16.
(1)求公比q;
(2)若a3 , a5分別為等差數(shù)列{bn}的第3項和第5項,求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是正方形,PD⊥底面ABCD,點E在棱PB上.
(1)求證:平面AEC⊥平面PDB;
(2)當PD=AB,且E為PB的中點時,求AE與平面PDB所成的角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a<0,函數(shù)f(x)=acosx+ + ,其中x∈[﹣ , ].
(1)設t= + ,求t的取值范圍,并把f(x)表示為t的函數(shù)g(t);
(2)求函數(shù)f(x)的最大值(可以用a表示);
(3)若對區(qū)間[﹣ , ]內(nèi)的任意x1 , x2 , 總有|f(x1)﹣f(x2)|≤1,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設M=( ﹣1)( ﹣1)( ﹣1)滿足a+b+c=1(其中a>0,b>0,c>0),則M的取值范圍是( )
A.[0, )
B.[ ,1)
C.[1,8)
D.[8,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 =(2,1), =(1,7), =(5,1),設R是直線OP上的一點,其中O是坐標原點.
(1)求使 取得最小值時 的坐標的坐標;
(2)對于(1)中的點R,求 與 夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發(fā)生有責任道路交通事故 | 下浮10% | |
上兩個年度未發(fā)生責任道路交通事故 | 下浮20% | |
上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮30% | |
上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發(fā)生有責任道路交通死亡事故 | 上浮30% |
某機購為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事用戶車盈利10000元,且各種投保類型車的頻率與上述機構調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com