如圖,已知ABCD-A1B1C1D1是棱長為3的正方體,點E在AA1上,點F在CC1上,且AE=FC1=1.
(1)求證:E,B,F(xiàn),D1四點共面;
(2)若點G在BC上,BG=,點M在BB1上,GM⊥BF,垂足為H,求證:EM⊥面BCC1B1;
(3)用表示截面EBFD1和面BCC1B1所成銳二面角大小,求tan.
解:(1)證明:在DD1上取一點N使得DN=1,連接CN,EN,顯然四邊形CFD1N是平行四邊形,所以D1F∥CN,同理四邊形DNEA是平行四邊形,所以EN∥AD,且EN=AD,又BC∥AD,且AD=BC,所以EN∥BC,EN=BC,所以四邊形CNEB是平行四邊形,所以CN∥BE,所以D1F∥BE,所以E,B,F(xiàn),D1四點共面. (2)因為所以∽MBG,所以,即,所以MB=1,因為AE=1,所以四邊形ABME是矩形,所以EM⊥BB1又平面ABB1A1⊥平面BCC1B1,且EM在平面ABB1A1內(nèi),所以面 (3)面,所以BF,MH,,所以∠MHE就是截面和面所成銳二面角的平面角,∠EMH=,所以,ME=AB=3,∽MHB,所以3∶MH=BF∶1,BF=,所以MH=,所以= |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
15 |
2 |
15 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com