設(shè)(其中,為常數(shù)),若。則等于(    )

A.31     B..17        C.-31      D .24

 

【答案】

A

【解析】因為設(shè),那么可知f(x)+f(-x)=14,因此可知f(-7)=-17,那么f(7)=31,選A

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(a-1)ln(x-1)+x-(4a-2)lnx,其中實數(shù)a為常數(shù).
(Ⅰ)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)設(shè)函數(shù)y=f(ex)有極大值點和極小值點分別為x1、x2,且x2-x1>ln2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
a(x+2)
,方程x=f(x)有唯一解,其中實數(shù)a為常數(shù),f(x1)=
2
2013
,f(xn)=xn+1(n∈N*
(1)求f(x)的表達式;
(2)求x2011的值;
(3)若an=
4
xn
-4023
bn=
a
2
n+1
+
a
2
n
2an+1an
(n∈N*)
,求證:b1+b2+…+bn<n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
0,                   x=0
xln|x|+mx2,x≠0
,其中實數(shù)m為常數(shù).
(Ⅰ)求證:m=0是函數(shù)f(x)為奇函數(shù)的充要條件;
(Ⅱ) 已知函數(shù)f(x)為奇函數(shù),當(dāng)x,y∈[0,e]時,求表達式z=yf(x)+xf(y)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(05年江蘇卷)(14分)

設(shè)數(shù)列{an}的前n項和為Sn,已知a1=1,a2=6,a3=11,且

其中A,B為常數(shù).

(Ⅰ)求A與B的值;

(Ⅱ)證明數(shù)列{an}為等差數(shù)列;

(Ⅲ)證明不等式對任何正整數(shù)m、n都成立.

查看答案和解析>>

同步練習(xí)冊答案