精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=elnx+
k
x
(其中e是自然對數的底數,k為正數)
(I)若f(x)在x=x0處取得極值,且x0是f(x)的一個零點,求k的值;
(II)若k∈[1,e],求f(x)在區(qū)間[
1
e
,1]上的最大值;
(III)設函數g(x)=f(x)-kx在區(qū)間(
1
e
,e)上是減函數,求k的取值范圍.
分析:利用導數工具研究函數的極值,單調性與最值問題.
(1)x0是極值點導數值為0,函數值也為0,解方程得k.
(2)函數在閉區(qū)間上的最值:先利用導數判斷單調性,后求最值.
(3)函數在區(qū)間上是減函數故其導數在該區(qū)間上≤0恒成立,故可解得k的范圍.
解答:解:(I)由已知f'(x0)=0,即
e
x0
-
k
x02
=0
,(2分)
x0=
k
e
,又f(x0)=0,即eln
k
e
+e=0
,∴k=1.(4分)

(II)f′(x)=
e
x
-
k
x2
=
e(x-
k
e
)
x2

∵1≤k≤e,∴
1
e
≤k≤1
,(6分)
由此得x∈(
1
e
,
k
e
)
時,f(x)單調遞減;
x∈(
k
e
,1)
時,f(x)單調遞增
fmax(x)∈{f(
1
e
),f(1)}
(8分)
f(
1
e
)=ek-e,f(1)=k

當ek-e>k,即
e
e-1
<k≤e
時,
fmax(x)=f(
1
e
)=ek-e

當ek-e≤k,即1≤k≤
e
e-1
時,
fmax(x)=f(1)=k(10分)

(III)g′(x)=f′(x)-k=
e
x
-
k
x2
-k
,
∵g(x)在(
1
e
,e)
在是減函數,
∴g'(x)≤0在x∈(
1
e
,e)
上恒成立
e
x
-
k
x2
-k≤0
x∈(
1
e
,e)
上恒成立,
k≥
e
x+
1
x
x∈(
1
e
,e)
上恒成立,(12分)
x+
1
x
≥2
x•
1
x
=2
當且僅當x=1時等號成立.
e
x+
1
x
e
2
,∴k∈[
e
2
,+∞)
(14分)
點評:本題關鍵是要明確導數在函數的單調性,極值,最值中的應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=e-x(cosx+sinx),將滿足f′(x)=0的所有正數x從小到大排成數列{xn}.求證:數列{f(xn)}為等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•西城區(qū)二模)已知函數f(x)=e|x|+|x|.若關于x的方程f(x)=k有兩個不同的實根,則實數k的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•菏澤一模)已知函數f(x)=e|lnx|-|x-
1
x
|,則函數y=f(x+1)的大致圖象為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)求f(x)在[-π,+∞)上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=e-x(x2+x+1).
(Ⅰ)求函數f(x)的單調遞減區(qū)間;
(Ⅱ)求函數f(x)在[-1,1]上的最值.

查看答案和解析>>

同步練習冊答案