橢圓的左右焦點(diǎn)分別為,過焦點(diǎn)的直線交該橢圓于兩點(diǎn),若的內(nèi)切圓面積為,兩點(diǎn)的坐標(biāo)分別為,則的值為 。
解析試題分析:由橢圓,所以a=4,b=3,∴c=,左、右焦點(diǎn)F1(-,0)、F2(,0),△ABF2的內(nèi)切圓面積為π,則內(nèi)切圓的半徑為r=1,而△ABF2的面積=△AF1F2的面積+△BF1F2的面積=×|y1|×|F1F2|+×|y2|×|F1F2|=×(|y1|+|y2|)×|F1F2|=|y2-y1|(A、B在x軸的上下兩側(cè))
又△ABF2的面積═×|r(|AB|+|BF2|+|F2A|=×(2a+2a)=2a=8.
所以|y2-y1|=8, |y2-y1|=,故答案為。
考點(diǎn):本試題主要考查了直線與圓錐曲線的綜合問題,橢圓的簡單性質(zhì),三角形內(nèi)切圓性質(zhì).
點(diǎn)評:解決該試題的關(guān)鍵是先根據(jù)橢圓方程求得a和c,及左右焦點(diǎn)的坐標(biāo),進(jìn)而根據(jù)三角形內(nèi)切圓面積求得內(nèi)切圓半徑,進(jìn)而根據(jù)△ABF2的面積=△AF1F2的面積+△BF1F2的面積求得△ABF2的面積= |y2-y1|進(jìn)而根據(jù)內(nèi)切圓半徑和三角形周長求得其面積,建立等式求得|y2-y1|的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
橢圓的左焦點(diǎn)為,直線與橢圓相交于點(diǎn)、,當(dāng)的周長最大時(shí),的面積是____________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知橢圓C的中心在坐標(biāo)原點(diǎn),長軸在x軸上,離心率為,且橢圓C上一點(diǎn)到
兩個(gè)焦點(diǎn)的距離之和為12,則橢圓C的方程為________________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com