(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(文)已知橢圓的一個焦點為,點在橢圓上,點滿足(其中為坐標原點), 過點作一斜率為的直線交橢圓于、兩點(其中點在軸上方,點在軸下方) .

(1)求橢圓的方程;
(2)若,求的面積;
(3)設(shè)點為點關(guān)于軸的對稱點,判斷的位置關(guān)系,并說明理由.
(1)(2)(3)共線,設(shè)出點的坐標,用向量的坐標運算即可證明.

試題分析:(1)由,得                                        ……2分
解得a2=2,b2=1,
所以,橢圓方程為.                                           ……4分
(2)設(shè)PQ:y=x-1,
得3y2+2y-1=0,                                           ……6分
解得: P(),Q(0,-1),
由條件可知點,
所以=|FT||y1-y2|=.                                          ……10分
(3) 判斷:共線.                                            ……11分
設(shè)
(x1,-y1),=(x2-x1,y2+y1),=(x2-2,y2),                        ……12分
.                       ……13分
(x2-x1)y2-(x2-2)(y1+y2)=(x2-x1)k(x2-1)-(x2-2)(kx1-k+kx2-k)
=3k(x1+x2)-2kx1x2-4k=3k-2k-4k
=k()=0.                                          ……15分
所以,共線.                                                ……16分
點評:高考中圓錐曲線的題目一般難度較大,而且一般運算量較大,要仔細運算,更要結(jié)合圖形數(shù)形結(jié)合簡化求解過程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的中心在原點,對稱軸為坐標軸,一條漸近線方程為,右焦點,雙曲線的實軸為,為雙曲線上一點(不同于),直線,分別與直線交于兩點
(1)求雙曲線的方程;
(2)是否為定值,若為定值,求出該值;若不為定值,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩定點,,曲線上的點P到、的距離之差的絕對值是6,則該曲線的方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點分別是雙曲線的左、右焦點,過且垂直于軸的直線與雙曲線交于兩點,若是鈍角三角形,則該雙曲線離心率的取值范圍是
(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(理)已知橢圓的一個焦點為,點在橢圓上,點滿足(其中為坐標原點),過點作一直線交橢圓于、兩點 .
(1)求橢圓的方程;
(2)求面積的最大值;
(3)設(shè)點為點關(guān)于軸的對稱點,判斷的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等軸雙曲線的中心在原點,焦點在軸上,與拋物線的準線交于兩點,;則的實軸長為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點與橢圓的右焦點重合,則的值為(   )
A.B.C.D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)設(shè)直線與直線交于點.
(1)當直線點,且與直線垂直時,求直線的方程;
(2)當直線點,且坐標原點到直線的距離為時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
中心在原點,長半軸長與短半軸長的和為9,離心率為0.6,求橢圓的標準方程。

查看答案和解析>>

同步練習(xí)冊答案