(本小題滿分12分)設直線與直線交于點.
(1)當直線點,且與直線垂直時,求直線的方程;
(2)當直線點,且坐標原點到直線的距離為時,求直線的方程.
(1) . (2).

試題分析:由,解得點.                      ………………………2分
(1)因為,所以直線的斜率,   ………………………4分
又直線過點,故直線的方程為:,即.                                      …………………………6分
(2)因為直線過點,當直線的斜率存在時,可設直線的方程為.                            …………………7分
所以坐標原點到直線的距離,解得,  …………9分
因此直線的方程為:,即.  …………10分
當直線的斜率不存在時,直線的方程為,驗證可知符合題意.
綜上所述,所求直線的方程為.  ………………12分
點評:典型題,在直線與直線的位置關系問題中,平行、垂直是兩類常見題型,如果利用斜率關系加以研究,必須考慮直線斜率不存在的可能情況。(2)是易錯題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的兩個焦點分別為,離心率。
(1)求橢圓方程;
(2)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M、N,且線段MN中點的橫坐標為–,求直線l傾斜角的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(文)已知橢圓的一個焦點為,點在橢圓上,點滿足(其中為坐標原點), 過點作一斜率為的直線交橢圓于、兩點(其中點在軸上方,點在軸下方) .

(1)求橢圓的方程;
(2)若,求的面積;
(3)設點為點關于軸的對稱點,判斷的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,橢圓的中心在坐標原點,為左焦點,當時,其離心率為,此類橢圓稱為“黃金橢圓”,類比“黃金橢圓”,可推出“黃金雙曲線”的離心率為         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知點分別為橢圓的左、右焦點,點為橢圓上任意一點,到焦點的距離的最大值為.
(1)求橢圓的方程。
(2)點的坐標為,過點且斜率為的直線與橢圓相交于兩點。對于任意的是否為定值?若是求出這個定值;若不是說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓的短軸為,一個焦點為,且為等邊三角形的橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列方程的曲線關于y軸對稱的是(  )
A.x2-x+y2=1B.x2y+xy2=1
C.x2-y2=1 D.x-y="1"

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
求焦點為(-5,0)和(5,0),且一條漸近線為的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知雙曲線以長方形ABCD的頂點A、B為左、右焦點,且雙曲線過C、D兩頂點.若AB=4,BC=3,則此雙曲線的標準方程為_____________________.

查看答案和解析>>

同步練習冊答案