(本小題滿分12分)設直線
與直線
交于
點.
(1)當直線
過
點,且與直線
垂直時,求直線
的方程;
(2)當直線
過
點,且坐標原點
到直線
的距離為
時,求直線
的方程.
試題分析:由
,解得點
. ………………………2分
(1)因為
⊥
,所以直線
的斜率
, ………………………4分
又直線
過點
,故直線
的方程為:
,即
. …………………………6分
(2)因為直線
過點
,當直線
的斜率存在時,可設直線
的方程為
即
. …………………7分
所以坐標原點
到直線
的距離
,解得
, …………9分
因此直線
的方程為:
,即
. …………10分
當直線
的斜率不存在時,直線
的方程為
,驗證可知符合題意.
綜上所述,所求直線
的方程為
或
. ………………12分
點評:典型題,在直線與直線的位置關系問題中,平行、垂直是兩類常見題型,如果利用斜率關系加以研究,必須考慮直線斜率不存在的可能情況。(2)是易錯題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓的兩個焦點分別為
,離心率
。
(1)求橢圓方程;
(2)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M、N,且線段MN中點的橫坐標為–
,求直線l傾斜角的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(文)已知橢圓
的一個焦點為
,點
在橢圓
上,點
滿足
(其中
為坐標原點), 過點
作一斜率為
的直線交橢圓于
、
兩點(其中
點在
軸上方,
點在
軸下方) .
(1)求橢圓
的方程;
(2)若
,求
的面積;
(3)設點
為點
關于
軸的對稱點,判斷
與
的位置關系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,橢圓的中心在坐標原點,
為左焦點,當
時,其離心率為
,此類橢圓稱為“黃金橢圓”,類比“黃金橢圓”,可推出“黃金雙曲線”的離心率為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)已知點
分別為橢圓
的左、右焦點,點
為橢圓上任意一點,
到焦點
的距離的最大值為
.
(1)求橢圓
的方程。
(2)點
的坐標為
,過點
且斜率為
的直線
與橢圓
相交于
兩點。對于任意的
是否為定值?若是求出這個定值;若不是說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若橢圓的短軸為
,一個焦點為
,且
為等邊三角形的橢圓的離心率是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
下列方程的曲線關于y軸對稱的是( )
A.x2-x+y2=1 | B.x2y+xy2=1 |
C.x2-y2=1 | D.x-y="1" |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
求焦點為(-5,0)和(5,0),且一條漸近線為
的雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,已知雙曲線以長方形ABCD的頂點A、B為左、右焦點,且雙曲線過C、D兩頂點.若AB=4,BC=3,則此雙曲線的標準方程為_____________________.
查看答案和解析>>