【題目】已知函數(shù)f(x)=cosx(x∈(0,2π))有兩個不同的零點x1、x2 , 方程f(x)=m有兩個不同的實根x3、x4 . 若把這四個數(shù)按從小到大排列構(gòu)成等差數(shù)列,則實數(shù)m的值為( )
A.
B.
C.
D.-
【答案】D
【解析】解:由題意可知:x1= ,x2=
,且x3、x4只能分布在x1、x2的中間或兩側(cè),若x3、x4只能分布在x1、x2的中間,則公差d=
=
,
故x3、x4分別為 、
,此時可求得m=cos
=﹣
;
若x3、x4只能分布在x1、x2的兩側(cè),則公差d= =π,
故x3、x4分別為 、
,不合題意.
故選D
【考點精析】本題主要考查了等差數(shù)列的性質(zhì)和函數(shù)的零點的相關(guān)知識點,需要掌握在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列;函數(shù)的零點就是方程的實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo).即:方程有實數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點,函數(shù)有零點才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正三棱柱ABCA1B1C1中,AB=2,AA1=2,由頂點B沿棱柱側(cè)面(經(jīng)過棱AA1)到達(dá)頂點C1,與AA1的交點記為M.求:
(1)三棱柱側(cè)面展開圖的對角線長;
(2)從B經(jīng)M到C1的最短路線長及此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,角A,B,C的對邊分別為a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D為△ABC外一點,DB=2,DC=1,求四邊形ABDC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行圍棋比賽,約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對方多2分或打滿8局時停止.設(shè)甲在每局中獲勝的概率為,且各局勝負(fù)相互獨立.已知第二局比賽結(jié)束時比賽停止的概率為
.
(1)求的值;
(2)設(shè)表示比賽停止時已比賽的局?jǐn)?shù),求隨機(jī)變量
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),且f(x)=x有唯一解,
,xn+1=f(xn)(n∈N*).
(1)求實數(shù)a的值;
(2)求數(shù)列{xn}的通項公式;
(3)若,數(shù)列b1,b2-b1,b3-b2,…,bn-bn-1是首項為1,公比為
的等比數(shù)列,記cn=anbn,求數(shù)列{cn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有五個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是;
②終邊在y軸上的角的集合是{α|α=;
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點;
④把函數(shù);
⑤函數(shù)。
其中真命題的序號是__________(寫出所有真命題的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)斜率為2的直線l,過雙曲線的右焦 點,且與雙曲線的左、右兩支分別相交,則雙曲線離心率,e的取值范圍是 ( )
A. e> B. e>
C. 1<e<
D. 1<e<
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在兩個正實數(shù),
,使得等式
成立,其中
為自然對數(shù)的底數(shù),則實數(shù)
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分分)
如圖,平行四邊形中,
,
,
,
平面
,
,點
為
中點,連結(jié)
、
.
(Ⅰ)若,
,求證:平面
平面
.
(Ⅱ)若,試探究在直線
上有幾個點
,使得
,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com