如圖,正三棱柱ABC-A1B1C1中,AB=2,AA1=3,D為C1B的中點(diǎn),P為AB邊上的動(dòng)點(diǎn).
(Ⅰ)當(dāng)點(diǎn)P為AB的中點(diǎn)時(shí),證明DP平面ACC1A1
(Ⅱ)若AP=3PB,求三棱錐B-CDP的體積.
(I)連接DP、AC1
∵△ABC1中,P、D分別為AB、BC1中點(diǎn)
∴DPAC1,
∵AC1⊆平面ACC1A1,DP?平面ACC1A1,
∴DP平面ACC1A1
(II)由AP=3PB,得PB=
1
4
AB=
1
2

過(guò)點(diǎn)D作DE⊥BC于E,則DECC1且DE=
1
2
CC1
又∵CC1⊥平面ABC,∴DE⊥平面BCP
∵CC1=3,∴DE=
3
2

∵S△BCP=
1
2
×2×
1
2
×sin60°=
3
4

∴三棱錐B-CDP的體積v=
1
3
×
3
4
×
3
2
=
3
8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,M、N分別是AB、PC的中點(diǎn)
(1)求證:MN平面PAD;
(2)若∠PAD=45°,求證:MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,已知AB=2AD=4,E為AB的中點(diǎn),現(xiàn)將△AED沿DE折起,使點(diǎn)A到點(diǎn)P處,滿(mǎn)足PB=PC,設(shè)M、H分別為PC、DE的中點(diǎn).
(1)求證:BM平面PDE;
(2)線段BC上是否存在一點(diǎn)N,使BC⊥平面PHN?試證明你的結(jié)論;
(3)求△PBC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:正方體ABCD-A1B1C1D1,AA1=2,E為棱CC1的中點(diǎn).
(1)求證:B1D1⊥AE;
(2)求證:AC平面B1DE;
(3)(文)求三棱錐A-BDE的體積.
(理)求三棱錐A-B1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:已知四邊形ABCD是正方形,PD⊥平面ABCD,PD=AD,點(diǎn)E,F(xiàn)分別是線段PB,AD的中點(diǎn)
(1)求證:FE平面PCD;
(2)求異面直線DE與AB所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在邊長(zhǎng)為a的正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別是CC1,C1D1,D1D,CD的中點(diǎn),N是BC的中點(diǎn),M在四邊形EFGH上及其內(nèi)部運(yùn)動(dòng),若MN平面A1BD,則點(diǎn)M軌跡的長(zhǎng)度是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖在四棱錐P-ABCD中,底面ABCD是平行四邊形,側(cè)棱PD⊥底面ABCD,PD=BC,E是PC的中點(diǎn),求證:PA平面EDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(文科)如圖,正方體ABCD-A1B1C1D1中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點(diǎn),
求證:平面AMN平面EFDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥CD,AD=CD,DB平分∠ADC,E為PC的中點(diǎn).求證:
(1)PA平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

同步練習(xí)冊(cè)答案