20.若復數(shù)z滿足(3-4i+z)i=2+i,則z=( 。
A.4+6iB.4+2iC.-4-2iD.-2+2i.

分析 利用復數(shù)的運算法則、共軛復數(shù)的定義即可得出.

解答 解:(3-4i+z)i=2+i,則3-4i+z=$\frac{2+i}{i}$=$\frac{-i(2+i)}{-i•i}$=-2i+1.
∴z=-2+2i.
故選:D.

點評 本題考查了復數(shù)的運算法則、共軛復數(shù)的定義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.△ABC中,邊長a、b是方程${x^2}-2\sqrt{3}x+2=0$的兩根,且2cos(A+B)=-1則邊長c等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知向量$\overrightarrow a=(1,1),\overrightarrow b=(1,0),\overrightarrow c$滿足$\overrightarrow a•\overrightarrow c=0$且$|\overrightarrow a|=|\overrightarrow c|,\overrightarrow b•\overrightarrow c>0$.
(1)求向量$\overrightarrow c$;
(2)若$\overrightarrow{OA}=\overrightarrow a,\overrightarrow{OC}=3\overrightarrow c$,點P(x,4)在線段AC的垂直平分線上,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知橢圓C1:$\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1({a_1}>{b_1}>0)$,雙曲線C2:$\frac{x^2}{a_1^2}-\frac{y^2}{b_1^2}=1({a_2}>0,{b_2}>0)$,以C1的短軸為一條最長對角線的正六邊形與x軸正半軸交于點M,F(xiàn)為橢圓右焦點,A為橢圓右頂點,B為直線$x=\frac{a_1^2}{c_1}$與x軸的交點,且滿足|OM|是|OA|與|OF|的等差中項,現(xiàn)將坐標平面沿y軸折起,當所成二面角為60°時,點A,B在另一半平面內(nèi)的射影恰為C2的左頂點與左焦點,則C2的離心率為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知$\frac{a+2i}{i}$=b+i(其中a,b∈R,i為虛數(shù)單位),則a+b的值為(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.一橋拱的形狀為拋物線,該拋物線拱的高為h,寬為b,此拋物線拱的面積為S,若b=3h,則S等于( 。
A.h2B.2h2C.$\frac{3}{2}$h2D.$\frac{7}{4}$h2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長為2,且函數(shù)y=x2-$\frac{65}{16}$的圖象與橢圓C僅有兩個公共點,過原點的直線l與橢圓C交于M,N兩點.
(1)求橢圓C的標準方程;
(2)點P為線段MN的中垂線與橢圓C的一個公共點,求△PMN面積的最小值,并求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的長軸長是短軸長的2倍,右焦點為F,點B,C分別是該橢圓的上、下頂點,點P是直線l:y=-2上的一個動點(與y軸交點除外),直線PC交橢圓于另一點M.記直線BM,BP的斜率分別為k1、k2
(1)當直線PM過點F時,求$\overrightarrow{PB}•\overrightarrow{PM}$的值;
(2)求|k1|+|k2|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=x+xlnx,若m∈Z,且f(x)-m(x-1)>0對任意的x>1恒成立,則m的最大值為( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案