(本題滿分14分)
已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上取兩個點,將其坐標記錄于下表中:
3 |
2 |
4 |
||
0 |
4 |
(Ⅰ)求的標準方程;
(Ⅱ)請問是否存在直線滿足條件:①過的焦點;②與交不同兩點且滿足?若存在,求出直線的方程;若不存在,說明理由.
解:(Ⅰ)設(shè)拋物線,則有,據(jù)此驗證個點知(3,)、(4,4)在拋物線上,易求 ………………2分
設(shè):,把點(2,0)(,)代入得:
解得
∴方程為 ………………………………………………………………6分
(Ⅱ)法一:
假設(shè)存在這樣的直線過拋物線焦點,設(shè)直線的方程為兩交點坐標為,
由消去,得…………………………8分
∴ ①
② ………………………10分
由,即,得
將①②代入(*)式,得, 解得 …………………12分
所以假設(shè)成立,即存在直線滿足條件,且的方程為:或…………………………………………………………………………………14分
法二:容易驗證直線的斜率不存在時,不滿足題意;……………………………6分
當直線斜率存在時,假設(shè)存在直線過拋物線焦點,設(shè)其方程為,與的交點坐標為
由消掉,得 , …………8分
于是 , ①
即 ② ………………………………10分
由,即,得
將①、②代入(*)式,得 ,解得;……12分
所以存在直線滿足條件,且的方程為:或.………14分
【解析】略
科目:高中數(shù)學 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實數(shù)m的值
(Ⅱ)若ACRB,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題
(本題滿分14分)
已知點是⊙:上的任意一點,過作垂直軸于,動點滿足。
(1)求動點的軌跡方程;
(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com