設(shè)l,m是兩條不同的直線,α,β是兩個(gè)不同的平面,有下列命題:
①l∥m,m?α,則l∥α;
②l∥α,m∥α則l∥m;
③α⊥β,l?α,則l⊥β;
④l⊥α,m⊥α,則l∥m.
其中正確的命題的個(gè)數(shù)是
 
考點(diǎn):命題的真假判斷與應(yīng)用
專題:空間位置關(guān)系與距離,簡易邏輯
分析:運(yùn)用空間中直線和平面的三種位置關(guān)系逐一核對四個(gè)命題,即可得到正確命題的個(gè)數(shù).
解答: 解:對于①,l∥m,m?α,則l∥α或l?α.命題①錯(cuò)誤;
對于②,l∥α,m∥α,則l∥m或l與m相交或l與m異面.命題②錯(cuò)誤;
對于③,α⊥β,l?α,則l∥α或l?α或l與β相交.命題③錯(cuò)誤;
對于④,l⊥α,m⊥α,則l∥m.為線面垂直的性質(zhì)定理,命題④正確.
∴正確命題的個(gè)數(shù)為1.
故答案為:1.
點(diǎn)評:本題考查命題的真假判斷與應(yīng)用,考查學(xué)生的空間想象能力和思維能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求y=
8
x2-5x+4
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊長分別為a,b,c,且cos
A+C
2
=
1
2

(1)若a=3,b=
7
,求c的值;
(2)若f(A)=sinA(
3
cosA-sinA),求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x+2
3
sinxcosx(x∈R).
(Ⅰ)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,且c=3,f(C)=2,若向量
m
=(1,sinA)與向量
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①?x0∈R,2x03x0;
②若函數(shù)f(x)=(x-a)(x+2)為偶函數(shù),則實(shí)數(shù)a的值為-2;
③圓x2+y2-2x=0上兩點(diǎn)P,Q關(guān)于直線kx-y+2=0對稱,則k=2;
④從1,2,3,4,5,6六個(gè)數(shù)中任取2個(gè)數(shù),則取出的兩個(gè)數(shù)是連續(xù)自然數(shù)的概率是
1
3
,
其中真命題是
 
(填上所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0),A、B分別是橢圓長軸的兩個(gè)端點(diǎn),M、N是橢圓上關(guān)于x軸對稱的兩點(diǎn),直線AM,BN的斜率分別為k1,k2,若|k1•k2|=
1
4
,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以下四個(gè)命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個(gè)實(shí)根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2};
②若
x-1
x-2
≤0
,則(x-1)(x-2)≤0;
③“若m>2,則x2-2x+m>0的解集是實(shí)數(shù)集R”的逆否命題;
④若函數(shù)f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
其中為真命題的是
 
.(填上你認(rèn)為正確的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<2},B={-1,0,2,3},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x2-mx+5,當(dāng)x∈[-1,+∞)時(shí)是增函數(shù),當(dāng)x∈(-∞,-1]時(shí)是減函數(shù),則f(-2)等于( 。
A、5B、7
C、9D、由m的值而定的常數(shù)

查看答案和解析>>

同步練習(xí)冊答案