15.已知命題p:函數(shù)y=x2+mx+1在(-1,+∞)上單調(diào)遞增,命題q:對(duì)函數(shù)y=-4x2+4(2-m)x-1,y≤0恒成立.若p∨q為真,p∧q為假,求m的取值范圍.

分析 求出兩個(gè)命題是真命題時(shí),m的范圍,利用復(fù)合命題的真假,推出一真一假,然后求解即可.

解答 (8分)
解:若函數(shù)y=x2+mx+1在(-1,+∞)上單調(diào)遞增,則-$\frac{m}{2}$≤-2,
∴m≥2,即p:m≥2.  …(2分)
若函數(shù)y=-4x2+4(2-m)x-1≤0恒成立,
則△=16(m-2)2-16≤0,
解得1≤m≤3,即q:1≤m≤3                …(4分)
∵p∨q為真,p∧q為假,∴p、q一真一假
當(dāng)p真q假時(shí),由$\left\{\begin{array}{l}m≥2\\ m<1或m>3\end{array}\right.$解得:m>3   …(6分)
當(dāng)p 假q真時(shí),由$\left\{\begin{array}{l}m<2\\ 1≤m≤3\end{array}\right.$解得:1≤m<2
綜上,m的取值范圍是{m|m>3或1≤m<2}.…(8分)

點(diǎn)評(píng) 本題考查命題的真假的判斷與應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f(x)=$\left\{\begin{array}{l}{(3-a)x-a,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$在(-∞,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是$\frac{3}{2}$≤a≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\sqrt{4-x}$+$\sqrt{{4}^{x}-4}$的定義域是A,集合B={x|m≤x≤m+2}.
(1)求定義域A;
(2)若A∪B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知直線l過(guò)拋物線C的焦點(diǎn),且與C的對(duì)稱軸垂直,l與C交于A,B兩點(diǎn),|AB|=10,P為C的準(zhǔn)線上一點(diǎn),則△ABP的面積為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知直線l:12x-5y=3與x2+y2-6x-8y+16=0相交于A,B兩點(diǎn),則|AB|=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{2^x}-a(x<1)}\\{4(x-a)(x-2a)(x≥1)}\end{array}}\right.$.若f(x)=0恰有2個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是$[\frac{1}{2},1)∪[2,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若不等式(a-2)x2+2(a-2)x-4<0的解集為R,則a的取值范圍是( 。
A.(-∞,2]B.(-2,2]C.(-2,2)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知圓C:(x-3)2+(y-4)2=4,直線l1過(guò)定點(diǎn)A(1,0).
(1)若l1與圓C相切,求l1的方程;
(2)若l1的傾斜角為$\frac{π}{4}$,l1與圓C相交于P、Q兩點(diǎn),求線段PQ的中點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖所示,游樂(lè)場(chǎng)中的摩天輪勻速逆時(shí)針旋轉(zhuǎn),每轉(zhuǎn)一圈需要6min,其中心O距離地面40.5m,摩天輪的半徑為40m,已知摩天輪上點(diǎn)P的起始位置在最低點(diǎn)處,在時(shí)刻t(min)時(shí)點(diǎn)P距離地面的高度為f(t)=Asin(ωt+φ)+h(A>0,ω>0,-π<φ<0,t≥0).
(Ⅰ)求f(t)的單調(diào)減區(qū)間;
(Ⅱ)求證:f(t)+f(t+2)+f(t+4)是定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案