【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
【答案】A
【解析】解:設(shè)g(x)= ,則g(x)的導(dǎo)數(shù)為:g′(x)= ,
∵當(dāng)x>0時總有xf′(x)<f(x)成立,
即當(dāng)x>0時,g′(x)恒小于0,
∴當(dāng)x>0時,函數(shù)g(x)= 為減函數(shù),
又∵g(﹣x)= = = =g(x),
∴函數(shù)g(x)為定義域上的偶函數(shù)
又∵g(﹣1)= =0,
∴函數(shù)g(x)的圖象性質(zhì)類似如圖:
數(shù)形結(jié)合可得,不等式f(x)>0xg(x)>0
或 ,
0<x<1或x<﹣1.
故選:A.
由已知當(dāng)x>0時總有xf′(x)﹣f(x)<0成立,可判斷函數(shù)g(x)= 為減函數(shù),由已知f(x)是定義在R上的奇函數(shù),可證明g(x)為(﹣∞,0)∪(0,+∞)上的偶函數(shù),根據(jù)函數(shù)g(x)在(0,+∞)上的單調(diào)性和奇偶性,模擬g(x)的圖象,而不等式f(x)>0等價于xg(x)>0,數(shù)形結(jié)合解不等式組即可.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=2sin2ωx+2sinωxcosωx﹣1(ω>0)的周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)在[ , ]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的個數(shù)是( )
①若直線l上有無數(shù)個點不在平面α內(nèi),則l∥α;
②若直線l與平面α平行,則l與平面α內(nèi)的任意一條直線都平行;
③如果兩條平行直線中的一條與一個平面平行,那么另一條也與這個平面平行;
④若直線l與平面α平行,則l與平面α內(nèi)的任意一條直線都沒有公共點.
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】環(huán)境監(jiān)測中心監(jiān)測我市空氣質(zhì)量,每天都要記錄空氣質(zhì)量指數(shù)(指數(shù)采取10分制,保留一位小數(shù)).現(xiàn)隨機(jī)抽取20天的指數(shù)(見下表),將指數(shù)不低于8.5視為當(dāng)天空氣質(zhì)量優(yōu)良.
天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
空氣質(zhì)量指數(shù) | 7.1 | 8.3 | 7.3 | 9.5 | 8.6 | 7.7 | 8.7 | 8.8 | 8.7 | 9.1 |
天數(shù) | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
空氣質(zhì)量指數(shù) | 7.4 | 8.5 | 9.7 | 8.4 | 9.6 | 7.6 | 9.4 | 8.9 | 8.3 | 9.3 |
(Ⅰ)求從這20天隨機(jī)抽取3天,至少有2天空氣質(zhì)量為優(yōu)良的概率;
(Ⅱ)以這20天的數(shù)據(jù)估計我市總體空氣質(zhì)量(天數(shù)很多).若從我市總體空氣質(zhì)量指數(shù)中隨機(jī)抽取3天的指數(shù),用X表示抽到空氣質(zhì)量為優(yōu)良的天數(shù),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)若,求的取值范圍;
(3)設(shè)函數(shù),其中.若函數(shù)與的圖象有且只有一個交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,則下列說法正確的( )
A.a∈(2,4),輸出的i的值為5
B.a∈(4,5),輸出的i的值為5
C.a∈(3,4),輸出的i的值為5
D.a∈(2,4),輸出的i的值為5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程關(guān)于時間的函數(shù)關(guān)系式分別為,,,,有以下結(jié)論:
①當(dāng)時,甲走在最前面;
②當(dāng)時,乙走在最前面;
③當(dāng)時,丁走在最前面,當(dāng)時,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運動下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號為 (把正確結(jié)論的序號都填上,多填或少填均不得分).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足:對任意、恒成立,當(dāng)時,.
(1)求證在上是單調(diào)遞增函數(shù);
(2)已知,解關(guān)于的不等式;
(3)若,且不等式對任意恒成立.求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com