在橢圓
x2
16
+
y2
9
=1
內(nèi),有一內(nèi)接三角形ABC,它的一邊BC與長軸重合,點A在橢圓上運動,則△ABC的重心的軌跡方程為______.
橢圓方程是
x2
16
+
y2
9
=1
中,
∵a=4,∴B(-4,0),C(4,0),
設(shè)重心M(x,y),則由重心的坐標(biāo)公式可得 A(3x,3y),
代入橢圓方程得
9x2
16
+y2=1
,y≠0.
故答案為:
9x2
16
+y2=1
,y≠0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線l被圓x2+y2=4所截得的弦長為2
3
,l與曲線
x2
3
+y2=1
的公共點個數(shù)為(  )
A.1個B.2個C.1個或2個D.1個或0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,且|F1F2|=4,一條漸近線的傾斜角為60°.
(I)求雙曲線C的方程和離心率;
(Ⅱ)若點P在雙曲線C的右支上,且△PF1F2的周長為16,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線y2=2px(p>0)的焦點F作直線與拋物線交于A、B兩點,以AB為直徑的圓與拋物線的準(zhǔn)線的位置關(guān)系是( 。
A.相交B.相切
C.相離D.與p的取值相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1
x2
2
+y2=1
和圓C2x2+y2=1,左頂點和下頂點分別為A,B,且F是橢圓C1的右焦點.
(1)若點P是曲線C2上位于第二象限的一點,且△APF的面積為
1
2
+
2
4
,求證:AP⊥OP;
(2)點M和N分別是橢圓C1和圓C2上位于y軸右側(cè)的動點,且直線BN的斜率是直線BM斜率的2倍,求證:直線MN恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點F(2,0),動圓P經(jīng)過點F且與直線x=-2相切,記動圓的圓心P的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)過點F作傾斜角為60°的直線l與軌跡C交于A(x1,y1)、B(x1,y2)兩點,O為坐標(biāo)原點,點M為軌跡C上一點,若向量
OM
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定點A(2,2),M在拋物線x2=4y上,M在拋物線準(zhǔn)線上的射影是P點,則MP-MA的最大值為( 。
A.1B.
5
C.
7
D.5-2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
3
2
,直線x+y+1=0與橢圓交于P、Q兩點,且OP⊥OQ,求該橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果橢圓
x2
36
+
y2
9
=1
的弦被點(2,2)平分,那么這條弦所在的直線的方程是( 。
A.x+4y=0B.x+4y-10=0C.x+4y-6=0D.x-4y-10=0

查看答案和解析>>

同步練習(xí)冊答案