4.設(shè)集合M={x|x<2016},N={x|y=lg(x-x2)},則下列關(guān)系中正確的是(  )
A.N∈MB.M∪N=RC.M∩N={x|0<x<1}D.M∩N=∅

分析 求出N中x的范圍確定出N,求出M與N的交集、并集,即可作出判斷.

解答 解:由N中y=lg(x-x2),得到x-x2>0,即x2-x<0,
分解因式得:x(x-1)<0,
解得:0<x<1,即N={x|0<x<1},
∵M(jìn)={x|x<2016},
∴M∩N={x|0<x<1},M∪N={x|x<2016},
故選:C.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某飲料店的日銷售收入y(單位:百元)與當(dāng)天平均氣溫x(單位:℃)之間有下列數(shù)據(jù):
x-2-1012
y54221
甲、乙、丙三位同學(xué)對(duì)上述數(shù)據(jù)進(jìn)行研究,分別得到了x與y之間的四個(gè)線性回歸方程,其中正確的是( 。
A.$\stackrel{∧}{y}$=-x+2.8B.$\stackrel{∧}{y}$=-x+3C.$\stackrel{∧}{y}$=-1.2x+2.6D.$\stackrel{∧}{y}$=2x+2.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)z=$\frac{2-i}{1+2i}$的虛部為( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)的導(dǎo)函數(shù)是f′(x),且f(x)的圖象如圖所示,則下列數(shù)值的大小關(guān)系正確的是(  )
A.f′(3)<f′(4)<f(4)-f(3)<0B.f′(4)<f′(3)<f(4)-f(3)<0C.f′(4)<f(4)-f(3)<f′(3)<0D.f′(3)<f(4)-f(3)<f′(4)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=ex-sinx的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2lnx-ax2+1
(1)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍;
(2)存在實(shí)數(shù)m使得f(x)=m的兩個(gè)零點(diǎn)α、β都屬于區(qū)間[1,4],且β-α=1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)集合P={x|${∫}_{0}^{x}$(3t2-8t+3)dt=0,x>0},則集合P的子集個(gè)數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=x2-8lnx+3.
(1)求曲線y=f(x)在點(diǎn)(1,4)處的切線方程;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在四棱錐P-ABCD中,直線AP,AB,AD兩兩相互垂直,且AD∥BC,AP=AB=AD=2BC.
(1)求異面直線PC與BD所成角的余弦值;
(2)求鈍二面角B-PC-D的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案