分析 (1)利用點A在直線l上,求出a的值,即可得出直線l的直角坐標方程;
(2)求出圓心到直線的距離,利用勾股定理,即可得出結論.
解答 解:(1)∵點A的極坐標為($\sqrt{2}$,$\frac{π}{4}$),直線l的極坐標方程為ρcos(θ-$\frac{π}{4}$)=a,且點A在直線l上,
∴a=$\sqrt{2}$,
∴ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$,
∴ρcosθ+ρsinθ=2,
∴x+y-2=0;
(2)曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=4+5cost\\ y=3+5sint\end{array}\right.$,(t為參數(shù)),普通方程為(x-4)2+(y-3)2=25,
∴C的軌跡是以C(4,3)為圓心,5為半徑的圓,
圓心到直線的距離d=$\frac{5}{\sqrt{2}}$,
∴|MN|=2$\sqrt{25-\frac{25}{2}}$=5$\sqrt{2}$.
點評 本題考查極坐標與直角坐標,參數(shù)方程與普通方程的互化,考查直線與圓的位置關系,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,+∞) | B. | (5,+∞) | C. | (-∞,0)∪(5,+∞) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | k≤-1 | B. | k≤-1或者k=0 | C. | (-∞,-1)∪{0} | D. | (-∞,-1]∩{0} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com