4.在平面直角坐標系中,以原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知點A的極坐標為($\sqrt{2}$,$\frac{π}{4}$),直線l的極坐標方程為ρcos(θ-$\frac{π}{4}$)=a,且點A在直線l上.
(1)求a的值及直線l的直角坐標方程;
(2)已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=4+5cost\\ y=3+5sint\end{array}\right.$,(t為參數(shù)),直線l與C交于M,N兩點,求弦長|MN|.

分析 (1)利用點A在直線l上,求出a的值,即可得出直線l的直角坐標方程;
(2)求出圓心到直線的距離,利用勾股定理,即可得出結論.

解答 解:(1)∵點A的極坐標為($\sqrt{2}$,$\frac{π}{4}$),直線l的極坐標方程為ρcos(θ-$\frac{π}{4}$)=a,且點A在直線l上,
∴a=$\sqrt{2}$,
∴ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$,
∴ρcosθ+ρsinθ=2,
∴x+y-2=0;
(2)曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=4+5cost\\ y=3+5sint\end{array}\right.$,(t為參數(shù)),普通方程為(x-4)2+(y-3)2=25,
∴C的軌跡是以C(4,3)為圓心,5為半徑的圓,
圓心到直線的距離d=$\frac{5}{\sqrt{2}}$,
∴|MN|=2$\sqrt{25-\frac{25}{2}}$=5$\sqrt{2}$.

點評 本題考查極坐標與直角坐標,參數(shù)方程與普通方程的互化,考查直線與圓的位置關系,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.已知在($\frac{1}{2}$x2-$\frac{1}{\sqrt{x}}$)n的展開式中,第9項為常數(shù)項,則n=10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知圓O:x2+y2=9上到直線l:a(x+4)+by=0(a,b是實數(shù))的距 離為1的點有且僅有2個,則直線l斜率的取值范圍是$(-∞,-\frac{{\sqrt{3}}}{3})∪(\frac{{\sqrt{3}}}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.定義在R上的函數(shù)f(x)滿足f(x)>1-f′(x),若f(0)=6,則不等式f(x)>1+$\frac{5}{e^x}$(e為自然對數(shù)的底數(shù))的解集為( 。
A.(0,+∞)B.(5,+∞)C.(-∞,0)∪(5,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.點(1,1)到直線x+y-1=0的距離為( 。
A.1B.2C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若集合A={x|kx2-2x-1=0}的元素至多一個,則實數(shù)k的取值集合為( 。
A.k≤-1B.k≤-1或者k=0C.(-∞,-1)∪{0}D.(-∞,-1]∩{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{log_2}(1-x),x≤0\\ f(x-1)-f(x-2),x>0\end{array}$,則f(2017)的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=lnx-ax+$\frac{x}$,且f(x)+f(${\frac{1}{x}}$)=0,其中a,b為常數(shù).
(1)若函數(shù)f(x)的圖象在x=1的切線經(jīng)過點(2,5),求函數(shù)的解析式;
(2)已知0<a<1,求證:f($\frac{a^2}{2}$)>0;
(3)當f(x)存在三個不同的零點時,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)y=f(x)是偶函數(shù),y=g(x)是奇函數(shù),它們的定義域是[-3,3],它們在x∈[0,3]上的圖象如圖所示,則不等式f(x)•g(x)≥0的解集是[-3,-$\frac{3}{2}$]∪[0,$\frac{3}{2}$].

查看答案和解析>>

同步練習冊答案