已知公差不為零的等差數(shù)列的前項(xiàng)和,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足,求的前項(xiàng)和.

(Ⅰ)  (Ⅱ)        

解析試題分析:(Ⅰ) 由已知得:
因?yàn)?nbsp; 所以
所以 ,所以
所以                6分
(Ⅱ)
(ⅰ) 當(dāng)為奇數(shù)時(shí)



(ⅱ) 當(dāng)為偶數(shù)時(shí)



所以             12分
考點(diǎn):本題考查了等差數(shù)列的通項(xiàng)及前n項(xiàng)和求法
點(diǎn)評(píng):數(shù)列的通項(xiàng)公式及應(yīng)用是數(shù)列的重點(diǎn)內(nèi)容,數(shù)列的大題對(duì)邏輯推理能力有較高的要求,在數(shù)列中突出考查學(xué)生的理性思維,這是近幾年新課標(biāo)高考對(duì)數(shù)列考查的一個(gè)亮點(diǎn),也是一種趨勢

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)公差為)的等差數(shù)列與公比為)的等比數(shù)列有如下關(guān)系:,
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)記,,,求集合中的各元素之和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的第二項(xiàng)為8,前10項(xiàng)和為185。
(1)求數(shù)列的通項(xiàng)公式;
(2)若從數(shù)列中,依次取出第2項(xiàng),第4項(xiàng),第8項(xiàng),……,第項(xiàng),……按原來順序組成一個(gè)新數(shù)列,試求數(shù)列的通項(xiàng)公式和前n項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前n項(xiàng)和為且滿足,.
(1)求數(shù)列的通項(xiàng)及前n項(xiàng)和
(2)令(),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足,數(shù)列滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,,數(shù)列的前n項(xiàng)和是,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)求證:數(shù)列是等比數(shù)列;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知公差大于零的等差數(shù)列,前項(xiàng)和為. 且滿足.
(Ⅰ)求數(shù)列的通項(xiàng)公式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,,構(gòu)成公比不等于1的等比數(shù)列.
(1)求證數(shù)列是等差數(shù)列;
(2)求的值;
(3)數(shù)列的前n項(xiàng)和為,若對(duì)任意均有成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知等差數(shù)列滿足:的前 項(xiàng)和為。
(Ⅰ)求
(Ⅱ)令,求數(shù)列的前項(xiàng)和并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案