(2012•河西區(qū)一模)若數(shù)列{an} 滿足
an+1 2
an 2
=p(p為正常數(shù),n∈N*),則稱{an} 為等方比數(shù)列.甲:數(shù)列{an} 是等方比數(shù)列;乙:數(shù)列{an} 是等比數(shù)列.則甲是乙的( 。
分析:若{an} 為“等方比數(shù)列”,說(shuō)明數(shù)列{an2}成公比為p的等比數(shù)列,而數(shù)列{an}的符號(hào)不能確定,故不一定成等比數(shù)列;反過(guò)來(lái)若“數(shù)列{an} 是等比數(shù)列”成立,說(shuō)明
an+1  
an  
=q是一個(gè)非零常數(shù),則
an+1 2
an 2
=q2是一個(gè)正常數(shù)符合等方比的定義,所以“數(shù)列{an} 是等方比數(shù)列”成立.由此可以得出正確答案.
解答:解:充分性:若數(shù)列{an} 為“等方比數(shù)列”,設(shè)
an+1 2
an 2
=p=1
可得數(shù)列{an} 的各項(xiàng)的絕對(duì)值相等,但符號(hào)不能確定.
比如:1,1,-1,-1,1,1,-1,-1,…,
就是一個(gè)等方比數(shù)列,而不是等比數(shù)列,故充分性不成立;
必要性:若“數(shù)列{an} 是等比數(shù)列”,設(shè)它的公比是q(q≠0)
an+1  
an  
=q⇒
an+1 2
an 2
=q2(正常數(shù)),
說(shuō)明數(shù)列{an} 為“等方比數(shù)列”,故必要性成立.
綜上所述,“數(shù)列{an} 是等方比數(shù)列”是“數(shù)列{an} 是等比數(shù)列”的必要非充分條件.
故選B.
點(diǎn)評(píng):本題考查了必要條件、充分條件與充要條件的判斷,屬于基礎(chǔ)題.將條件進(jìn)行化簡(jiǎn),找出“誰(shuí)能推出誰(shuí)”和“誰(shuí)被誰(shuí)推出”的問(wèn)題,是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河西區(qū)一模)設(shè)函數(shù)f(x)=(1+x)2+ln(1+x)2
(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[
1e
-1,e-1]時(shí),不等式f(x)<m恒成立,求實(shí)數(shù)m的取值范圍;
(3)若關(guān)于x的方程f(x)=x2+x+a在區(qū)間[0,2]上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河西區(qū)一模)已知平面內(nèi)點(diǎn)A(cos
x
2
,sin
x
2
)
,點(diǎn)B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2

(1)求f(x)的最小正周期;
(2)若x∈[-π,π],求f(x)的最大和最小值,并求當(dāng)f(x)取最值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河西區(qū)一模)設(shè)復(fù)數(shù)Z滿足Z•(1+2i)=4+3i,則Z等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河西區(qū)一模)(2x3-
1
x
7的展開(kāi)式中常數(shù)項(xiàng)為a,則a的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案