18.函數(shù)f(x)=3${\;}^{\sqrt{x-1}}$+$\sqrt{2-x}$,定義域為[1,2].

分析 由根式內(nèi)部的代數(shù)式大于等于0聯(lián)立不等式組求解.

解答 解:由$\left\{\begin{array}{l}{x-1≥0}\\{2-x≥0}\end{array}\right.$,解得1≤x≤2.
∴函數(shù)f(x)=3${\;}^{\sqrt{x-1}}$+$\sqrt{2-x}$的定義域為[1,2].
故答案為:[1,2].

點評 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:
廣告費用x(萬元)4235
銷售額(萬元)49263954
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\hat{a}$;
(2)據(jù)此模型預(yù)報廣告費用為7萬元時的銷售額.
附:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\hat$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知sin(α+$\frac{π}{3}$)+cos(α-$\frac{π}{2}$)=-$\frac{4\sqrt{3}}{5}$,-$\frac{π}{2}$<α<0,則cos(α+$\frac{2π}{3}$)等于( 。
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.方程$\frac{{x}^{2}}{2+m}$-$\frac{{y}^{2}}{m+1}$=1表示雙曲線,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列命題正確的是( 。
A.很小的實數(shù)可以構(gòu)成集合
B.自然數(shù)集N中最小的數(shù)是1
C.集合{y|y=x2-1}與{(x,y)|y=x2-1}是同一個集合
D.空集是任何集合的子集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.給出下列命題:
①若直線l與平面α內(nèi)的一條直線平行,則l∥α;
②若平面α⊥平面β,且α∩β=l,則過α內(nèi)一點P與l垂直的直線垂直于平面β;
③?x0∈(3,+∞),x0∉(2,+∞);
④已知a∈R,則“a<2”是“a2<2a”的必要不充分條件.
其中正確命題有( 。
A.②④B.①②C.D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一個空間幾何體的三視圖如右圖,其中正視圖是邊長為2的正三角形,俯視圖是邊長分別為1,2的矩形,則該幾何體的側(cè)面積為4+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知A={x|-2≤x<4},B={x|x>a},若A∩B≠∅,且A∩B≠A,則實數(shù)a的取值集合為[-2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=lg(x-1)+$\frac{3}{x-2}$的定義域是(1,2)∪(2,+∞).

查看答案和解析>>

同步練習(xí)冊答案