在△ABC中,點(diǎn)P在BC上,且
BP
=2
PC
,點(diǎn)Q是AC的中點(diǎn),若
PA
=(4,3)
,
PQ
=(1,5)
,則
BC
=( 。
A、(-2,7)
B、(-6,21)
C、(2,-7)
D、(6,-21)
分析:利用向量的坐標(biāo)形式的運(yùn)算法則求出
AQ
,利用向量共線的充要條件求出
AC
,利用向量共線的充要條件求出
BC
解答:解:
AQ
=
PQ
-
PA
=(-3,2)
∵點(diǎn)Q是AC的中點(diǎn)
AC
=2
AQ
=(-6,4)

PC
=
PA
+
AC
=(-2,7)

BP
=2
PC

BC
=3
PC
=(_6,21)
故選B
點(diǎn)評:本題考查向量的運(yùn)算法則、向量共線的充要條件:
a
b
?
b
a
(
a
0
)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點(diǎn)P在BC上,且
BP
=2
PC
,點(diǎn)Q是AC的中點(diǎn),若
PA
=(4,3)
,
PQ
=(1,5)
,
BC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點(diǎn)P在BC上,且
BP
=2
PC
,Q是AC的中點(diǎn),以P為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,若
PA
=(4,3),
PQ
=(1,5)
,則
BC
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點(diǎn)P在BC上,且
BP
=2
PC
,點(diǎn)Q為
AC
中點(diǎn),若
PA
=(4,3),
PQ
=(1,5),則
BC
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點(diǎn)PBC上,且=2,點(diǎn)QAC的中點(diǎn),若=(4,3),=(1,5),則=(  )

A.(-2,7)              B.(-6,21)

C.(2,-7)         D.(6,-21)

查看答案和解析>>

同步練習(xí)冊答案