(2012•西城區(qū)一模)對于數(shù)列A:a1,a2,a3(ai∈N,i=1,2,3),定義“T變換”:T將數(shù)列A變換成數(shù)列B:b1,b2,b3,其中bi=|ai-ai+1|(i=1,2),且b3=|a3-a1|.這種“T變換”記作B=T(A).繼續(xù)對數(shù)列B進行“T變換”,得到數(shù)列C:c1,c2,c3,依此類推,當?shù)玫降臄?shù)列各項均為0時變換結束.
(Ⅰ)試問A:2,6,4經過不斷的“T變換”能否結束?若能,請依次寫出經過“T變換”得到的各數(shù)列;若不能,說明理由;
(Ⅱ)設A:a1,a2,a3,B=T(A).若B:b,2,a(a≥b),且B的各項之和為2012.
(。┣骯,b;
(ⅱ)若數(shù)列B再經過k次“T變換”得到的數(shù)列各項之和最小,求k的最小值,并說明理由.
分析:(Ⅰ)首先要弄清“T變換”的特點,其次要嘗試著去算幾次變換的結果,看一下有什么規(guī)律,顯然只有當變換到數(shù)列的三項都相等時,再經過一次“T變換”才能得到數(shù)列的各項均為零,否則“T變換”不可能結束.(Ⅱ)中(i)的解答要通過已知條件得出a是B數(shù)列的最大項,從而去掉絕對值符號得到數(shù)列A是單調數(shù)列,得到答案.(ii)的解答要抓住B經過6次“T變換”后得到的數(shù)列也是形如“b,2,b+2”的數(shù)列,與數(shù)列B“結構”完全相同,且最大項減少12,從而數(shù)列和減少24,經過6×83+4=502次變換后使得各項的和最小,于是k的最小值為502.
解答:(本小題滿分13分)
(Ⅰ)解:數(shù)列A:2,6,4不能結束,各數(shù)列依次為4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….
以下重復出現(xiàn),所以不會出現(xiàn)所有項均為0的情形.         …(3分)
(Ⅱ)解:(ⅰ)因為B的各項之和為2012,且a≥b,所以a為B的最大項,
所以|a1-a3|最大,即a1≥a2≥a3,或a3≥a2≥a1.…(5分)
當a1≥a2≥a3時,可得
b=a1-a2
2=a2-a3
a=a1-a3.

由a+b+2=2012,得2(a1-a3)=2012,即a=1006,故b=1004.…(7分)
當a3≥a2≥a1時,同理可得 a=1006,b=1004.…(8分)
(ⅱ)方法一:由B:b,2,b+2,則B經過6次“T變換”得到的數(shù)列分別為:b-2,b,2;2,b-2,b-4;b-4,2,b-6;b-6,b-8,2;2,b-10,b-8;b-12,2,b-10.
由此可見,經過6次“T變換”后得到的數(shù)列也是形如“b,2,b+2”的數(shù)列,與數(shù)列B“結構”完全相同,但最大項減少12.
因為1006=12×83+10,
所以,數(shù)列B經過6×83=498次“T變換”后得到的數(shù)列為8,2,10.
接下來經過“T變換”后得到的數(shù)列分別為:6,8,2;2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2,…
從以上分析可知,以后重復出現(xiàn),所以數(shù)列各項和不會更。
所以經過498+4=502次“T變換”得到的數(shù)列各項和最小,k的最小值為502.…(13分)
方法二:若一個數(shù)列有三項,且最小項為2,較大兩項相差2,則稱此數(shù)列與數(shù)列B“結構相同”.
若數(shù)列B的三項為x+2,x,2(x≥2),則無論其順序如何,經過“T變換”得到的數(shù)列的三項為x,x-2,2(不考慮順序).
所以與B結構相同的數(shù)列經過“T變換”得到的數(shù)列也與B結構相同,除2外其余各項減少2,各項和減少4.
因此,數(shù)列B:1004,2,1006經過502次“T變換”一定得到各項為2,0,2(不考慮順序)的數(shù)列.
通過列舉,不難發(fā)現(xiàn)各項為0,2,2的數(shù)列,無論順序如何,經過“T變換”得到的數(shù)列會重復出現(xiàn),各項和不再減少.
所以,至少通過502次“T變換”,得到的數(shù)列各項和最小,故k的最小值為502.…(13分)
點評:此題需要較強的邏輯思維能力及計算能力,通過計算發(fā)現(xiàn)和歸納出其規(guī)律,進而得出答案.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)已知集合A={x|x=a0+a1×3+a2×32+a3×33},其中ak∈{0,1,2}(k=0,1,2,3),且a3≠0.則A中所有元素之和等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)若a=log23,b=log32,c=log46,則下列結論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)在△ABC中,已知2sinBcosA=sin(A+C).
(Ⅰ)求角A;
(Ⅱ)若BC=2,△ABC的面積是
3
,求AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)乒乓球單打比賽在甲、乙兩名運動員間進行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結束),假設兩人在每一局比賽中獲勝的可能性相同.
(Ⅰ)求甲以4比1獲勝的概率;
(Ⅱ)求乙獲勝且比賽局數(shù)多于5局的概率;
(Ⅲ)求比賽局數(shù)的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)如圖,AC為⊙O的直徑,OB⊥AC,弦BN交AC于點M.若OC=
3
,OM=1,則MN=
1
1

查看答案和解析>>

同步練習冊答案