【題目】已知直線為參數(shù)),曲線為參數(shù)).

(1)設相交于兩點,求;

(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線的距離的最大時,點P的坐標.

【答案】(1);(2)

【解析】試題分析:

(1)把兩個方程都化為直角坐標方程,然后聯(lián)立方程組求出兩交點坐標,由兩點間距離公式可得距離;

(2)由圖象變換可得曲線上點,由點到直線距離公式求出到直線的距離為,由正弦函數(shù)的性質(zhì)可得最大值.

試題解析:

(1)的普通方程, 的普通方程,聯(lián)立方程組解得的交點為, ,則

(2)的參數(shù)方程為為參數(shù)),故點的坐標是,從而點到直線的距離是,由此當時, 取得最大值,且最大值為.此時,點P坐標為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2018年某市政府為了有效改善市區(qū)道路交通擁堵狀況出臺了一系列的改善措施.其中市區(qū)公交站點重新布局和建設作為重點項目.市政府相關部門根據(jù)交通擁堵情況制定了“市區(qū)公交站點重新布局方案”,現(xiàn)準備對該“方案”進行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否啟用該“方案”,調(diào)查人員分別在市區(qū)的各公交站點隨機抽取若干市民對該“方案”進行評分,并將結(jié)果繪制成如圖所示的頻率分布直方圖.相關規(guī)則為:①調(diào)查對象為本市市民,被調(diào)查者各自獨立評分;②采用百分制評分,內(nèi)認定為滿意,不低于分認定為非常滿意;③市民對公交站點布局的滿意率不低于即可啟用該“方案”;④用樣本的頻率代替概率.

(1)從該市市民中隨機抽取人,求恰有人非常滿意該“方案”的概率;并根據(jù)所學統(tǒng)計學知識判斷該市是否啟用該“方案”,說明理由;

(2)已知在評分低于分的被調(diào)查者中,老年人占,現(xiàn)從評分低于分的被調(diào)查者中按年齡分層抽取人以便了解不滿意的原因,并從中抽取人擔任群眾監(jiān)督員,記為群眾監(jiān)督員中老年人的人數(shù),求隨機變量的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校開展一次知識競賽活動,共有三個問題,其中第1、2題滿分都是15分,第3題滿分是20分.每個問題或者得滿分,或者得0分.活動結(jié)果顯示,每個參賽選手至少答對一道題,有6名選手只答對其中一道題,有12名選手只答對其中兩道題.答對第1題的人數(shù)與答對第2題的人數(shù)之和為26,答對第1的人數(shù)與答對第3題的人數(shù)之和為24,答對第2題的人數(shù)與答對第3題的人數(shù)之和為22.則參賽選手中三道題全答對的人數(shù)是____;所有參賽選手的平均分是____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若上具有單調(diào)性,求實數(shù)k的取值范圍;

(2)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個極值點分別為,,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,分別是的中點.

(1)證明:平面平面;

(2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年的3月21日被定為“世界睡眠日”,擁有良好睡眠對人的健康至關重要,一夜好眠成為很多現(xiàn)代人的訴求.某市健康研究機構(gòu)于2018年3月14日到3月20日持續(xù)一周,通過網(wǎng)絡調(diào)查該市20歲至60歲市民的日平均睡眠時間(單位:小時),共有500人參加調(diào)查,其中年齡在區(qū)間的有200人,現(xiàn)將調(diào)查數(shù)據(jù)統(tǒng)計整理后,得到如下頻數(shù)分布表:

(1)根據(jù)上表,在給定坐標系中畫出這500名市民日平均睡眠時間的頻率分布直方圖;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為該市20歲至60歲市民的日平均睡眠時間與年齡有關;

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,在復平面內(nèi)z對應的點為Z,那么滿足下列條件的點Z的集合是什么圖形?

1

2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的中心在坐標原點,焦點 ,在坐標軸上,離心率為,且過點

(1) 求雙曲線的標準方程;

(2) 若點在第一象限且是漸近線上的點,當時,求點的坐標.

查看答案和解析>>

同步練習冊答案