設(shè)i是虛數(shù)單位,若復(fù)數(shù)
2-mi
1+i
為純虛數(shù),則實數(shù)m的值為( 。
A、2
B、-2
C、
1
2
D、-
1
2
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:化簡復(fù)數(shù)為a+bi的形式,利用復(fù)數(shù)的基本概念,列出方程求解即可.
解答: 解:依題意
2-mi
1+i
=
(2-mi)(1-i)
(1+i)(1-i)
=
2-m
2
-
m+2
2
i

由復(fù)數(shù)
2-mi
1+i
為純虛數(shù)可知
2-m
2
=0
,且
m+2
2
≠0

求得m=2.
故選:A.
點評:本題主要考查復(fù)數(shù)的基本概念與復(fù)數(shù)的運算.解題的關(guān)鍵是利用復(fù)數(shù)運算法則進行復(fù)數(shù)的乘法、除法運算,求解時注意理解純虛數(shù)的概念.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB為圓O的直徑,四方形ABCD為正方形,點E,F(xiàn)在圓O上,AD⊥AF,AB=AF=2.
(1)求證:EF∥平面ABCD;
(2)求三棱錐B-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-
1
2
,
1
2
]上隨機取一個數(shù)x,則cosπx的值介于
2
2
3
2
之間的概率為( 。
A、
1
3
B、
1
4
C、
1
5
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-
1
2
ax2-2x
(1)當(dāng)a=0時,求證:f(x)>0恒成立;
(2)記y=f(x)為函數(shù)y=f(x)的導(dǎo)函數(shù),y=f″(x)為函數(shù)y=f′(x)的導(dǎo)函數(shù),對于連續(xù)函數(shù)y=f(x),我們定義:若f″(x0)=0且在x0兩側(cè)f″(x)異號,則點(x0,f(x0))為曲線y=f(x)的拐點,是否存在正實數(shù)a,使得函數(shù)f(x)=ex-
1
2
ax2-2x在其拐點處切線的傾斜角a為
6
,若存在求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin(π+θ)=-
3
5
,θ是第二象限角,sin(
π
2
+φ)=-
2
5
5
,φ是第三象限角,則cos(θ-φ)的值是( 。
A、-
5
5
B、
5
5
C、
11
5
25
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=xcosx,若f(a)=
1
2
,則f(-a)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(
x
-1)=x-2
x
+2,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,m和n都是實數(shù),且m(1+i)=
3
+m,則(
m+ni
m-ni
2015=( 。
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

每年暑假期間,安徽衛(wèi)視播出的《男生女生向前沖》闖關(guān)節(jié)目都非;穑J關(guān)規(guī)則為:如果單人通過所有關(guān)卡達到終點,則可獲得一臺空調(diào),今年高考結(jié)束夠,高三某班學(xué)生為了放松一下,挑選了3名男生.3名女生組成男生隊與女生隊兩個隊伍參加這檔節(jié)目,3名男生能成功到達終點得概率分別為
1
4
,
1
5
,
1
6
.3名女生體質(zhì)差不多,每位女生能成功到達終點得概率均為
1
5
(男生和女生之間沒有影響)
(1)求男生隊沒有獲得空調(diào)且女生隊獲得三臺空調(diào)的概率;
(2)設(shè)男生隊獲得空調(diào)的臺數(shù)為ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案