解:(1)分割
在區(qū)間[0,1]上等間隔地插入n-1個(gè)點(diǎn),將它等分成n個(gè)小區(qū)間:[0,],[],…,[,1].
記第i個(gè)區(qū)間為[](i=1,2,…,n),其長度為Δx=.分別將上述n-1個(gè)分點(diǎn)作x軸的垂線,把曲邊梯形分成n個(gè)小曲邊梯形,它們的面積記作:ΔS1,ΔS2,…,ΔSn.
S=.
(2)近似代替
記f(x)=2x2,當(dāng)n很大,即Δx很小時(shí),在區(qū)間[]上,可以認(rèn)為f(x)=2x2的值變化很小,近似地等于一個(gè)常數(shù),不妨認(rèn)為它近似地等于左端點(diǎn)處的函數(shù)值f().就是用平行于x軸的直線段近似地代替小曲邊梯形的曲邊,這樣,在區(qū)間[]上,用小矩形的面積ΔSi′近似地代替ΔSi,即在局部小范圍內(nèi)“以直代曲”,則有
ΔSi≈ΔSi′=f()ΔS=2()2·Δx
=2()2·(i=1,2,…,n). ①
(3)求和
小曲邊梯形的面積和Sn≈
從而得到S的近似值,
S=Sn= ②
(4)取極限
分別將區(qū)間[0,1]等分成8,16,20,…等份時(shí),可以看到隨著n的不斷增大,即Δx越來越小時(shí),Sn=越來越趨近于S,而當(dāng)n趨向于+∞時(shí),②式無限趨向于,即所求面積為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:選修設(shè)計(jì)同步數(shù)學(xué)人教A(2-2) 人教版 題型:044
求拋物線y=2x2與直線x=0,x=1,y=0所圍成的平面圖形的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省南陽市2009-2010學(xué)年春期期中考試高二數(shù)學(xué)考試(理科) 題型:解答題
(10分)求拋物線y=2x2與直線y=2x所圍成平面圖形的面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com