已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)求f(x)的單調區(qū)間;
(3)設g(x)=x2-2x,若對任意x1Î(0,2],均存在x2Î(0,2],使得f(x1)<g(x2),求實數(shù)a的取值范圍.
略
【解析】f ′(x)=ax-(2a+1)+(x>0).
(1)f ′(1)=f ′(3),解得a=. ……………………4分
(2)f ′(x)=(x>0).
①當0<a<時,>2,
在區(qū)間(0,2)和(,+∞)上,f ′(x)>0;在區(qū)間(2,)上f ′(x)<0,
故f(x)的單調遞增區(qū)間是(0,2)和(,+∞),單調遞減區(qū)間是(2,). ……6分
②當a=時,f ′(x)=≥0,故f(x)的單調遞增區(qū)間是(0,+∞). ………8分
③當a>時,0<<2,在區(qū)間(0,)和(2,+∞)上,f ′(x)>0;在區(qū)間(,2)上f ′(x)<0,故f(x)的單調遞增區(qū)間是(0,)和(2,+∞),單調遞減區(qū)間是(,2). …10分
(3)由已知,在(0,2]上有f(x)max<g(x)max. …………………11分
由已知,g(x)max=0,由(2)可知,
①當0<a≤時,f(x)在(0,2]上單調遞增,
故f(x)max=f(2)=2a-2(2a+1)+2ln2=-2a-2+2ln2,
∴-2a-2+2ln2<0,解得a>ln2-1,ln2-1<0,故0<a≤. ……13分
②當a>時,f(x)在(0,]上單調遞增,在[,2]上單調遞減,
故f(x)max=f()=-2--2lna.
由a>可知lna>ln>ln=-1,2lna>-2,-2lna<2,
∴-2-2lna<0,f(x)max<0, ……………………………15分
綜上所述,a>0. ……………………………16分
科目:高中數(shù)學 來源:2012-2013學年江西省南昌市高一5月聯(lián)考數(shù)學卷(解析版) 題型:解答題
已知函數(shù)f(x)= (a、b為常數(shù)),且方程f(x)-x+12=0有兩個實根為x1=3,x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設k>1,解關于x的不等式f(x)< .
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆遼寧盤錦市高一第一次階段考試數(shù)學試卷(解析版) 題型:解答題
(12分)已知函數(shù)f(x)= (a,b為常數(shù),且a≠0),滿足f(2)=1,方程f(x)=x有唯一實數(shù)解,求函數(shù)f(x)的解析式和f[f(-4)]的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省萊蕪市高三上學期10月測試理科數(shù)學 題型:解答題
(本小題滿分l2分)
已知函數(shù)f(x)=a-
(1)求證:函數(shù)y=f(x)在(0,+∞)上是增函數(shù);
(2)若f(x)<2x在(1,+∞)上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年湖南省十二校高三第一次聯(lián)考數(shù)學文卷 題型:解答題
( (本小題滿分13分)
已知函數(shù)f(x)=(a-1)x+aln(x-2),(a<1).
(1)討論函數(shù)f(x)的單調性;
(2)設a<0時,對任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆黑龍江省高一期末考試文科數(shù)學 題型:解答題
(12分)已知函數(shù)f(X)=㏒a(ax-1) (a>0且a≠1)
(1)求函數(shù)的定義域 (2)討論函數(shù)f(X)的單調性
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com