分析 (I)由圓C的圓心C的極坐標為(2,$\frac{π}{3}$),即$(1,\sqrt{3})$,半徑為2,可得圓的標準方程為:$(x-1)^{2}+(y-\sqrt{3})^{2}$=4,展開 利用互化公式即可化為極坐標方程.
(II)把直線l的參數(shù)方程代入圓C的方程可得:t2+2tcosφ-3=0,利用根與系數(shù)的關系可得:|MN|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,再利用三角函數(shù)的單調性與值域即可得出.
解答 解:(I)由圓C的圓心C的極坐標為(2,$\frac{π}{3}$),即$(1,\sqrt{3})$,半徑為2,可得圓的標準方程為:$(x-1)^{2}+(y-\sqrt{3})^{2}$=4,
展開可得:x2+y2-2x-2$\sqrt{3}$y=0,化為極坐標方程:ρ2-2ρcosθ-2$\sqrt{3}$ρsinθ=0,即ρ=2cosθ+2$\sqrt{3}$sinθ=4cos$(\frac{π}{3}-θ)$.
(II)把直線l的參數(shù)方程代入圓C的方程可得:t2+2tcosφ-3=0,
∴t1+t2=-2cosφ,t1t2=-3.
∴|MN|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=2$\sqrt{co{s}^{2}φ+3}$,
∵φ∈[0,$\frac{π}{3}$],∴cosφ∈$[\frac{1}{2},1]$,cos2φ∈$[\frac{1}{4},1]$.
∴|MN|∈$[\sqrt{13},4]$.
點評 本題考查了極坐標方程化為直角坐標方程、參數(shù)方程化為普通方程、直線參數(shù)方程的應用、一元二次方程的根與系數(shù)的關系、三角函數(shù)的單調性與值域,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,$-\frac{2π}{3}$) | B. | (2,$-\frac{π}{3}$) | C. | (2,$\frac{π}{3}$) | D. | (2,$\frac{2π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com