【題目】已知圓,點(diǎn),是圓上一動(dòng)點(diǎn),點(diǎn)在線段上,點(diǎn)在半徑上,且滿足.

(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;

(2)設(shè)過(guò)點(diǎn)的直線與軌跡交于點(diǎn)不在軸上),垂直于的直線交于點(diǎn),與軸交于點(diǎn),若,求點(diǎn)橫坐標(biāo)的取值范圍.

【答案】(1)(2)

【解析】分析:(1)由直線為線段的垂直平分線,則,可得點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn),焦距為,長(zhǎng)軸為的橢圓;

(2)由題意直線的斜率存在,設(shè),于是直線的方程為,設(shè),聯(lián)立方程組,利用根與系數(shù)的關(guān)系得,設(shè),所在直線方程為,令,得,利用,即可得出

詳解:(1)由題意知,直線為線段的垂直平分線,所以

所以點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn),焦距為4,長(zhǎng)軸為4的橢圓,

,,,

故點(diǎn)的軌跡的方程為 .

(2)由題意直線的斜率存在設(shè)為,于是直線的方程為,

設(shè),聯(lián)立,得

因?yàn)?/span>,由根與系數(shù)的關(guān)系得,

,

設(shè)的橫坐標(biāo)為,則,

所在直線方程為

,得,·

于是,

,

整理得,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列說(shuō)法是否正確,若錯(cuò)誤,請(qǐng)舉出反例

1)互斥的事件一定是對(duì)立事件,對(duì)立事件不一定是互斥事件;

2)互斥的事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件;

3)事件與事件B中至少有一個(gè)發(fā)生的概率一定比B中恰有一個(gè)發(fā)生的概率大;

4)事件與事件B同時(shí)發(fā)生的概率一定比B中恰有一個(gè)發(fā)生的概率小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中a >2.

(I)討論函數(shù)f(x)的單調(diào)性;

(II)若對(duì)于任意的,恒有,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)fx)滿足條件f0)=1,及fx+1)﹣fx)=2x

1)求函數(shù)fx)的解析式;

2)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為.

(1)求橢圓的方程式;

(2)已知?jiǎng)又本與橢圓相交于兩點(diǎn).

①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;

②已知點(diǎn),求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)記,的導(dǎo)函數(shù),如果是函數(shù)的兩個(gè)零點(diǎn),且滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)上單調(diào)遞增,又函數(shù).

(1)求實(shí)數(shù)的值,并說(shuō)明函數(shù)的單調(diào)性;

(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,側(cè)面是邊長(zhǎng)為2的菱形,,.

(Ⅰ)證明:

(Ⅱ)若底面是以為直角頂點(diǎn)的直角三角形,且,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中a >2.

(I)討論函數(shù)f(x)的單調(diào)性;

(II)若對(duì)于任意的,恒有,求a的取值范圍.

(III)設(shè),,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案