在△ABC中,若sinA:sinB:sinC=1:
3
:1
,則B大小為( 。
A、30°B、60°
C、90°D、120°
考點(diǎn):余弦定理,正弦定理
專題:三角函數(shù)的求值,解三角形
分析:利用正弦定理化簡(jiǎn)已知等式得出a,b,c的比值,設(shè)出a,b,c,利用余弦定理代入cosB中,求出cosB的值,即可確定出B的度數(shù).
解答: 解:∵
a
sinA
=
b
sinB
=
c
sinC
=2R,
∴sinA=
a
2R
,sinB=
b
2R
,sinC=
c
2R

將sinA:sinB:sinC=1:
3
:1,
得到a:b:c=1:
3
:1,
設(shè)a=k,b=
3
k,c=k,
∴cosB=
a2+c2-b2
2ac
=
k2+k2-3k2
2k2
=-
1
2

則B=120°.
故選:D.
點(diǎn)評(píng):此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)連續(xù)函數(shù)f(x)>0,則當(dāng)a<b時(shí),定積分
b
a
f(x)dx
的符號(hào)( 。
A、一定是正的
B、當(dāng)0<a<b時(shí)為正,當(dāng)a<b<0時(shí)為負(fù)
C、一定是負(fù)的
D、當(dāng)0<a<b時(shí)為負(fù),當(dāng)a<b<0時(shí)為正

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(x,y,z)滿足(x-1)2+(y-1)2+(z+1)2=4,則點(diǎn)P在( 。
A、以點(diǎn)(1,1,-1)為圓心,以2為半徑的圓上
B、以點(diǎn)(1,1,-1)為中心,以2為棱長(zhǎng)的正方體上
C、以點(diǎn)(1,1,-1)為球心,以2為半徑的球面上
D、無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

180°=( 。﹔ad.
A、2πB、πC、3.14D、e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的終邊經(jīng)過(guò)點(diǎn)P(
3
,-1),則cosα-sinα=( 。
A、-
3
-1
2
B、-
3
+1
2
C、
3
-1
2
D、
3
+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程
x2
25-k
+
y2
k-9
=1表示橢圓,則k的取值范圍是(  )
A、(9,17)
B、(9,25)
C、(9,17)∪(17,25)
D、(-∞,9)∪(25,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A=60°,a2=bc,則△ABC內(nèi)角B=( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1-x2
|2-x|-2
,則對(duì)其奇偶性的正確判斷是( 。
A、既是奇函數(shù)也是偶函數(shù)
B、既不是奇函數(shù)也不是偶函數(shù)
C、是奇函數(shù)不是偶函數(shù)
D、是偶函數(shù)不是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有兩個(gè)質(zhì)地均勻的骰子:其中一個(gè)是正四面體,各面分別標(biāo)有數(shù)字1、2、3、4;另一個(gè)是正方體,各面分別標(biāo)有數(shù)字1、2、3、4、5、6.
現(xiàn)有以下兩種游戲方案可供選擇:
方案一:連續(xù)拋擲正方體骰子三次,每次出現(xiàn)奇數(shù)得2張積分卡,出現(xiàn)偶數(shù)不得積分卡,
方案二:順次完成以下三步.
第一步:拋擲正方體骰子一次,出現(xiàn)不大于4的數(shù)字得2張積分卡,出現(xiàn)大于4的數(shù)字不得積分卡;
第二步:拋擲正四面體骰子一次,出現(xiàn)不大于3的數(shù)字得1張積分卡,出現(xiàn)大于3的數(shù)字不得積分卡;
第三步:拋擲正方體骰子一次,出現(xiàn)小于5的數(shù)字得2張積分卡,出現(xiàn)不小于5的數(shù)字不得積分卡.
(Ⅰ)求采用方案一所得到的總積分卡數(shù)X的分布列和數(shù)學(xué)期望;
(Ⅱ)為了得到更多的積分卡,你該選擇上述哪種方案?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案