分析 (1)證明PD⊥AF,CD⊥DA,CD⊥PA,即可證明CD⊥面ADP,推出CD⊥AF.證明AF⊥面PCD.
(2)幾何體的體積轉(zhuǎn)化為兩個三棱錐的體積,求解即可.
解答 解:(1)由幾何體的三視圖可知,底面ABCD是邊長為4的正方形,PA⊥面ABCD,
∵PA=AD,F(xiàn)為PD的中點,∴PD⊥AF,又∵CD⊥DA,CD⊥PA,PA∩DA=A,
∴CD⊥面ADP,∴CD⊥AF.又CD∩DP=D,∴AF⊥面PCD.
(2)易知PA⊥面ABCD,CB⊥面ABEP,故此幾何體的體積為$V={V_{P-ACD}}+{V_{C-ABEP}}=\frac{1}{3}{S_{ACD}}×AP+\frac{1}{3}{S_{ABEP}}×CB$=$\frac{1}{3}×8×4+\frac{1}{3}×12×4=\frac{80}{3}$.
點評 本題考查幾何體的體積的求法,直線與平面垂直以及平行的判定定理的應(yīng)用,考查空間想象能力以及邏輯推理能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{2π}{3}$個單位長度 | B. | 向左平移$\frac{π}{3}$個單位長度 | ||
C. | 向右平移$\frac{π}{6}$個單位長度 | D. | 向右平移$\frac{π}{3}$個單位長度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com